
UNIVERSIDADE DE SÃO PAULO
ESCOLA DE ENGENHARIA DE SÃO CARLOS

LEANDRO YUJI KANNO

Desenvolvimento de algoritmo de visão computacional com

redes neurais para navegação de robô aquático

São Carlos

2024

LEANDRO YUJI KANNO

Desenvolvimento de algoritmo de visão computacional com
redes neurais para navegação de robô aquático

Monografia apresentada ao Curso

de Engenharia Mecatrônica, da

Escola de Engenharia de São Car-

los da Universidade de São Paulo,

como parte dos requisitos para

obtenção do título de Engenheiro

Mecatrônico.

Orientadora: Profª. Dra. Maíra

Martins da Silva

São Carlos

2024

AUTORIZO A REPRODUÇÃO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalográfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

Kanno, Leandro Yuji

 K16d Desenvolvimento de algoritmo de visão
computacional com redes neurais para navegação de robô
aquático / Leandro Yuji Kanno; orientadora Maíra
Martins da Silva. São Carlos, 2023.

Monografia (Graduação em Engenharia Mecatrônica)

-- Escola de Engenharia de São Carlos da Universidade
de São Paulo, 2023.

1. Visão computacional. 2. TensorFlow. 3.

Detecção de Objetos. 4. Rastreamento de Objetos. I.
Título.

Eduardo Graziosi Silva - CRB - 8/8907

Powered by TCPDF (www.tcpdf.org)

 1 / 1

FOLHA DE AVALIAÇÃO

Candidato: Leandro Yuji Kanno

Título: Desenvolvimento de algoritmo de visão computacional com
redes neurais para navegação de robô aquático

Trabalho de Conclusão de Curso apresentado à
Escola de Engenharia de São Carlos da

Universidade de São Paulo
Curso de Engenharia Mecatrônica.

BANCA EXAMINADORA

Professora Maíra Martins da Silva
(Orientadora)

Nota atribuída: _____ (__________________) _________________________

(assinatura)

Professor Adriano Almeida Gonçalves Siqueira

Nota atribuída: _____ (__________________) _________________________

(assinatura)

Professor Alberto Cliquet Junior

Nota atribuída: _____ (__________________) _________________________
(assinatura)

Média: ______ (_________________)

Resultado: ________________________

Data: 21/12/2023.

Este trabalho tem condições de ser hospedado no Portal Digital da Biblioteca da EESC

SIM□ NÃO□ Visto do orientador _________________________

10,0 dez

dez

dez

10,0

10,0

10,0
dez

APROVADO

Este trabalho é dedicado ao laboratório de Dinâmica,

como uma contribuição para o desenvolvimento de novas ideias

e oportunidades de aprendizados.

AGRADECIMENTOS

Agradeço primeiramente aos meus pais, que sempre estiveram presentes e incentivaram

minhas escolhas e fizeram seu máximo para ajudar a segui-las. Ao meu pai, agradeço por

sempre ter sido uma pessoa exemplar que zelou pela minha segurança, futuro e sonhos.

À minha mãe, agradeço por ter sido motivação e ter confiado em mim até seu último dia.

Suas últimas palavras dirigidas a mim ainda ecoam em meu coração, e não seria possível

seguir em frente sem elas.

Minha eterna gratidão à Luna, que em sua inocência e pureza sempre deu à família

alegria em bons momentos e conforto nos momentos de maiores pesares.

Agradeço também às amizades que fiz dentro e fora da universidade, que não só me

apoiaram academicamente, como também em meu luto. Breno, Felippe, João Guilherme,

Kamila, Samanta e Vinicius.

Sou grato também a minha grande amiga e companheira Bruna, que colaborou de

diversas formas ao longo do desenvolvimento do trabalho e em múltiplos campos da vida,

manteve tanto meus pés no chão e meu foco para frente.

Por fim, agradeço à professora doutora Maíra Martins, não apenas por ter feito muito

pela comunidade de discentes da USP, como também por ter me dado a oportunidade

de aprender mais sobre assuntos que me interesso muito e, ainda mais, permitiu que a

liberdade criativa orientasse o desenvolvimento deste projeto.

“Divida cada dificuldade em quantas partes for viável

e necessário para a resolver.”

René Descartes

RESUMO

KANNO, L. 124p. Desenvolvimento de algoritmo de visão computacional com redes

neurais para navegação de robô aquático. 2023. Monografia (Trabalho de Conclusão de

Curso) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos,

2023.

O crescente progresso de tecnologias de processamento em escalas cada vez menores

possibilitou o uso de tarefas que antes eram computacionalmente dispendiosas em sistemas

embarcados de dimensões reduzidas. Em diversas situações a portabilidade e baixo peso

são parâmetros desejáveis, e, com o objetivo de complementar o estudo de robôs macios

aquáticos bioinspirados, esta tese busca desenvolver um código que colete a localização da

posição relativa dos objetos no ambiente em relação à câmera acoplada ao sistema robótico.

Para tal, com o requisito da versatilidade em termos de modos de atuação e tipos de objetos

que o algoritmo é capaz de detectar, serão utilizados modelos de redes neurais para realizar

a inferência das imagens coletadas. Dentre as vantagens do uso de aprendizado profundo

estão a possibilidade de alternar entre modelos pré existentes e variar entre a velocidade,

ou seja, maior ou menor exigência de recursos computacionais, e a acurácia, o que permite

a adequação a diferentes hardwares. A linguagem de programação Python será utilizada

junto à biblioteca TensorFlow, que fornece APIs de alto nível para aprendizado de máquina.

Palavras-chave: Visão computacional. TensorFlow. Detecção de Objetos. Rastreamento de

Objetos.

ABSTRACT

KANNO, L. P. Development of a computer vision algorithm with neural networks for

aquatic robot navigation.. 2023. 124p. Monograph (Conclusion Course Paper) – Escola de

Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2023.

The growing progress of processing technologies on increasingly smaller scales has enabled

the use of tasks that were previously computationally expensive in embedded systems of re-

duced dimensions. In various situations, portability and low weight are desirable parameters.

With the aim of complementing the study of bioinspired aquatic soft robots, this thesis seeks

to develop code that collects the location of the relative position of objects in the environment

concerning the camera attached to the robotic system. To achieve this, with the requirement

of versatility in terms of operating modes and types of objects that the algorithm can detect,

neural network models will be used to infer the collected images. Among the advantages of

using deep learning are the possibility of switching between pre-existing models and varying

between speed, i.e., higher or lower computational resource requirements, and accuracy,

allowing adaptation to different hardware. The Python programming language will be used

alongside the TensorFlow library, which provides high-level APIs for machine learning.

Keywords: Computer Vision. TensorFlow. Object Detection. Object Tracking.

LISTA DE ILUSTRAÇÕES

Figura 1 – Etapas do processamento de imagem e visão computacional 30

Figura 2 – Modelo lógico de um neurônio humano 30

Figura 3 – Neurônio artificial . 31

Figura 4 – Perceptron multicamadas . 32

Figura 5 – Função de perda com o gradiente em direção ao mínimo 36

Figura 6 – Momentum utilizado para encontrar o mínimo do erro 38

Figura 7 – Rede Neural Convolucional sobre imagem 40

Figura 8 – Máscaras e caixas delimitadoras. 41

Figura 9 – Pontos chave na imagem. 41

Figura 10 – Resultado do algoritmo de deslocamento médio sobre carro 42

Figura 11 – Campos de fluxo de imagem previstos pelo algoritmo de fluxo óptico . . 43

Figura 12 – Intersecção sobre União . 45

Figura 13 – Diagrama conceitual do funcionamento do TensorFlow 47

Figura 14 – ROS: Mensagens entre nós Publisher e Subscriber 48

Figura 15 – Raspberry Pi 4B . 50

Figura 16 – Exemplo de imagem utilizada para realizar o treinamento da rede 51

Figura 17 – Tensorboard - Gráfico da função de perda 53

Figura 18 – Inferência do modelo sobre imagem . 56

Figura 19 – Ajuste de trajetória através das coordenadas de centro e do objeto . . . 59

Figura 20 – Uso do filtro Kalman para otimização do ajuste de trajetória e perseguição

do objeto alvo em movimento. Fonte: Autor 59

Figura 21 – Organização de um workspace (espaço de trabalho) ROS 62

Figura 22 – Pastas do projeto . 63

Figura 23 – Resultado após nove horas de treino 65

Figura 24 – Resultado após cinco dias de treino . 66

Figura 25 – Imagem da inferência com múltiplos objetos 67

Figura 26 – Módulo TensorFlow não disponível ao executar o ROS na máquina local

Windows 11 . 68

Figura 27 – Erro da requisição do servidor . 69

LISTA DE TABELAS

Tabela 1 – Comparação de algoritmos de rastreamento de objetos 44

Tabela 2 – Comparação de performance de modelos de detecção de objetos . . . 54

LISTA DE ABREVIATURAS E SIGLAS

API Application Programming Interface (Interface de Programação de Aplica-

ção)

ROS Robot Operating System

MS COCO Microsoft Common Objects in Context

mAP Mean Average Precision

SUMÁRIO

1 INTRODUÇÃO . 25

1.1 Contexto e Motivação . 25

1.2 Objetivos . 25

1.3 Organização do Trabalho . 25

2 REVISÃO BIBLIOGRÁFICA . 27

2.1 Visão Geral . 27

2.2 Visão Computacional . 27

2.2.1 Pré-processamento . 28

2.2.2 Segmentação de imagens . 28

2.2.3 Extração de Características . 28

2.2.4 Reconhecimento . 29

2.3 Redes Neurais Convolucionais Profundas 29

2.3.1 Rede Neural Artificial . 30

2.3.2 Perceptron . 31

2.3.3 Aprendizado de um Perceptron . 31

2.3.4 Perceptron de Múltiplas Camadas . 32

2.3.5 Funções de ativação . 33

2.3.6 Função de Erro . 35

2.3.7 Algoritmos de Otimização . 36

2.3.8 Retropropagação . 39

2.3.9 Redes Neurais Convolucionais (CNNs) 39

2.3.10 Saídas dos modelos de detecção de objetos 40

2.4 Rastreamento de Objetos . 41

2.4.1 Deslocamento Médio . 41

2.4.2 Fluxo Óptico . 42

2.4.3 Algoritmos de Predição de Trajetória 43

2.4.4 SORT . 43

2.5 TensorFlow . 45

2.6 ROS . 46

3 DESENVOLVIMENTO . 49

3.1 Hardware utilizado . 49

3.1.1 Máquina local . 49

3.1.2 Raspberry Pi 4B . 49

3.2 Treinamento de modelo . 50

3.2.1 Dataset . 51

3.2.2 Uso de modelos pré-treinados . 52

3.2.3 TensorBoard . 52

3.3 Modelos e diferenças . 52

3.4 Algoritmo de Visão . 53

3.4.1 Ambiente de Desenvolvimento . 54

3.4.2 Detecção de Objeto . 55

3.4.3 Rastreamento de Objeto . 55

3.4.3.1 Critérios . 57

3.4.3.2 Coordenadas extraídas . 58

3.4.4 Predição de trajetória . 58

3.4.4.1 Filtro Kalman . 60

3.4.4.2 Cálculo de FPS . 60

3.4.4.3 Considerações . 62

3.5 Implementação do ROS . 62

3.5.1 Publisher Node . 62

3.5.2 Message . 64

3.5.3 Topic . 64

3.5.4 Subscriber . 64

4 RESULTADOS . 65

4.1 Treinamento do modelo . 65

4.2 Detecção e Rastreamento de Objetos 65

4.3 ROS . 67

4.4 Uso da Raspberry . 67

5 CONCLUSÃO . 71

REFERÊNCIAS . 73

APÊNDICE A - CÓDIGO DE INFERÊNCIA 75

APÊNDICE B - DOWNLOAD DE MODELOS 85

APÊNDICE C - TREINAMENTO DE MODELO 87

APÊNDICE D - VERSÕES DE BIBLIOTECAS COMPATÍVEIS 95

ANEXO A - LICENÇA DO LABELIMG 97

ANEXO B - LICENÇA D0 NUMPY . 99

ANEXO C - LICENÇA DO OPENCV . 101

ANEXO D - LICENÇA DO ROS . 105

ANEXO E - LICENÇA DO SORT . 107

ANEXO F - LICENÇA DO TENSORFLOW 119

25

1 INTRODUÇÃO

1.1 Contexto e Motivação

A coleta de dados em ambientes subaquáticos se beneficia substancialmente de disposi-

tivos com boa manobrabilidade e rendimento energético. Nesse contexto, exploram-se novas

alternativas de mecanismos de locomoção, com a robótica macia bioinspirada visando a

eficiência de uma estrutura capaz de realizar movimentos ondulatórios e oscilatórios para

deslocar-se. Com o intuito de avaliar a eficácia dessa abordagem, é fundamental analisar

a dinâmica do robô ao executar tarefas em que a performance de trajetórias variáveis se

torna um requisito para o bom desempenho do sistema. Isso se torna possível por meio da

execução da função de perseguição de um objeto alvo.

A viabilidade dessa abordagem é facilitada pelo campo de estudo da visão computacio-

nal, que oferece diversas possibilidades e soluções para a detecção de objetos. Utilizando

técnicas de processamento e operações sobre as imagens, bibliotecas em Python são

empregadas para extrair coordenadas de objetos. O laboratório conduziu estudos iniciais

utilizando técnicas de visão computacional com detecção de objetos baseada na análise de

formas e padrões geométricos. Agora, esta tese propõe a utilização de redes neurais para

detectar uma ampla gama de objetos.

Entre as vantagens das redes neurais destaca-se a versatilidade, pois conseguem lidar

com diferentes formas e objetos que possuem variações expressivas de características,

dependendo do ângulo e das condições de iluminação. Esses são fatores que, em outras

técnicas, dificultariam significativamente a tarefa da inferência de objetos na imagem. No

entanto, por meio do aprendizado profundo, a viabilidade da operação não é comprometida.

1.2 Objetivos

Este trabalho consiste em desenvolver um código que realiza a inferência de obje-

tos nas imagens coletadas e, não só isso, o rastreamento dos objetos presentes. Para

atender a diferentes interesses de operações e testes, alguns requisitos de versatilidade

são desejados, de forma que seja possível priorizar diferentes classes de objetos e, no

caso de existirem múltiplos objetos da mesma categoria na imagem coletada pela câmera,

estabelecer critérios para definir um deles em específico.

1.3 Organização do Trabalho

Este trabalho foi dividido em 5 capítulos, seguidos da seção de Referências. O presente

capítulo apresenta a contextualização e objetivos. O segundo capítulo abordará a Revisão da

Literatura que conterá conceitos imprescindíveis para a compreensão do desenvolvimento do

trabalho. O terceiro capítulo lista os materiais utilizados, suas especificações, limitações para

26

execução dos objetivos propostos e processo de desenvolvimento a partir deles. A quarta

seção consta os resultados obtidos através dos procedimentos descritos desenvolvimento. A

quinta seção contém as conclusões, considerações e perspectivas para o desenvolvimento

de futuros trabalhos.

27

2 REVISÃO BIBLIOGRÁFICA

2.1 Visão Geral

Esta seção tem o objetivo de fornecer os alicerces teóricos para a compreensão do

trabalho desenvolvido, através do entendimento dos principais fundamentos que compõem

os algoritmos de visão computacional.

A apresentação dos conceitos primordiais será de suma importância para que a abor-

dagem das principais soluções base existentes possa ser comparada através do mesmo

escopo de premissas, desempenho e propósitos, como nos casos em que há diferentes

alternativas para realizar cálculos e tarefas dentro do algoritmo.

Grande parte das escolhas leva em consideração os recursos computacionais dispo-

níveis e a viabilização da coleta de dados e elaboração de uma resposta em tempo real,

visto que dentro da visão computacional existem operações em que não é necessária uma

resposta imediata, como no caso de análises de imagens e vídeos coletados previamente,

o que não é o caso de um sistema que visa controlar um robô em movimento.

O funcionamento da aplicação em questão, a locomoção até um objeto, pode ser dividido

nas etapas da detecção do objeto, o rastreamento dos elementos presentes e a escolha de

um deles como alvo do robô. As etapas da detecção e rastreamento são as mais complexas

e possuem soluções já trabalhadas que devem ser analisadas e adaptadas, enquanto o

estabelecimento de critérios para definir um alvo é uma questão específica e será abordada

na seção sobre o desenvolvimento do código.

2.2 Visão Computacional

A visão computacional é um campo que visa fornecer aos computadores a capacidade de

extrair informações de imagens de forma autônoma e possui diversas aplicações cotidianas

como reconhecimento de objetos, detecção de padrões, reconhecimento de impressões

digitais, reconhecimento facial, entre outros.

O procedimento para realizar essas tarefas pode variar bastante dependendo de qual

o objetivo a ser cumprido e dispõe de uma grande variedade de técnicas e métodos que

permitem a análise e interpretação de vídeos por sistemas computacionais.

Através de princípios fundamentais da geometria, estatística, álgebra linear e proces-

samento de sinais, os pixels que compõem os quadros analisados têm seus padrões e

características relevantes extraídas. Tipicamente, os sistemas de visão computacional

passam pelas etapas descritas a seguir. (GONZALEZ, 2008)

28

2.2.1 Pré-processamento

Antes da análise dos pixels presentes, o pré-processamento da imagem realiza tarefas

como a redução de ruídos, normalização da iluminação, ajuste de contraste e outros

procedimentos que visam a melhora da qualidade dos dados e a facilitação da extração de

características.

2.2.2 Segmentação de imagens

A segmentação divide uma imagem em regiões que contém padrões com indicativos

de que possuem elementos de interesse. Essa segmentação pode ocorrer através de

procedimentos que levam em conta as coordenadas da região, o contorno de objetos

detectados por varreduras que analisam o gradiente dos valores ao longo dos pixels,

segmentação semântica, entre outros métodos. Uma segmentação bem sucedida identifica

objetos individuais.

2.2.3 Extração de Características

Na etapa da extração de características são identificados padrões distintos nas regiões

de interesse previamente segmentadas, com técnicas como a detecção de bordas, linhas,

regiões e pontos de interesse e extração de descritores (GONZALEZ, 2008). Podemos citar

como exemplos de descritores analisados:

• Histogramas de cores

Análise da distribuição de cores na porção da imagem através do padrão do histo-

grama.

• Textura

Descritores que se baseiam em padrões de textura, como, por exemplo, filtros Gabor

ou características Haralick.

• Gradientes e bordas

Representam a intensidade das mudanças de valores armazenados nos pixels, como

o Histograma de Gradientes Orientados (HOG).

• Momentos de imagem

Descreve a forma e distribuição dos pixels e morfologias encontradas na imagem.

• Descritores de forma

Parâmetros e padrões geométricos que caracterizam a forma do elemento de inte-

resse.

29

• Descritores de borda

Analisa as bordas detectadas na imagem e seus padrões quando relacionadas.

• Descritores locais

Descreve características localizadas como, por exemplo, SIFT (Scale-Invariant Feature

Transform) e SURF (Speeded Up Robust Features).

• Descritores de frequência

Relaciona-se às características da frequência da imagem. Usualmente a partir da

conversão da imagem para sua correspondente no domínio da frequência através da

Transformada de Fourier.

• Momentos invariantes

Descritores que, mesmo com transformações geométricas como rotação, translação

e alterações na escala, permanecem inalterados.

• Histograma de gradientes de cores

Descreve a distribuição dos gradientes de cores de acordo com o sistema de codifica-

ção da imagem e seus canais.

• Redes neurais pré-treinadas

Descritores pautados em redes neurais treinadas para tarefas específicas de visão

computacional.

2.2.4 Reconhecimento

Através das características extraídas é feita a associação de objetos a classes ou

identidades. Os elementos detectados passam então por uma análise a fim de que seja

inferido se aquele conjunto de pixels possui evidências suficientes para que seja classificado

como pertencente a uma das categorias de interesse do algoritmo.

2.3 Redes Neurais Convolucionais Profundas

O aprendizado profundo é um subconjunto dentro do aprendizado de máquina e se

baseia em redes neurais profundas. Ao contrário do aprendizado de máquina tradicional,

em que os dados se caracterizam por serem estruturados e bem definidos, o aprendizado

profundo é adequado para tarefas complexas com dados não estruturados, como em

aplicações que envolvem o reconhecimento de padrões em sons e imagens.

30

Figura 1 – Etapas do processamento de imagem e visão computacional

Modificado de Rafael C. Gonzalez, 2008

2.3.1 Rede Neural Artificial

Uma rede neural artificial (artificial neural network, ANN) é projetada para fazer a mímese

de como funciona um cérebro humano: aprende a reconhecer e classificar de acordo com

a análise de padrões. Cientistas da computação se inspiraram no sistema de neurônios,

humanos que se conectam e cruzam informações, para projetar as redes neurais artificiais.

Figura 2 – Modelo lógico de um neurônio humano

Modificado de (ANSARI, 2020).

Tanto nos neurônios biológicos quanto nos das redes neurais artificiais, os sinais de

entrada x1, x2, ..xn são associados a pesos w1, w2, ..wn, e esses sinais são então proces-

sados através de funções para gerar saídas. A unidade de processamento que combina

esses sinais de entrada é chamada de neurônio e sua função matemática é chamada de

função de ativação.

31

Figura 3 – Neurônio artificial

Modificado de (ANSARI, 2020).

2.3.2 Perceptron

Um único neurônio de uma rede neural é chamado de perceptron, ele implementa

uma função matemática que opera nos sinais de entrada e gera saídas. Isoladamente,

forma a rede neural mais simples, como no caso da Figura 3. As entradas para o neurônio

são coletadas do ambiente através de dispositivos como câmeras ou outros aparatos de

sensoriamento, mas também podem vir das saídas de outros neurônios.

2.3.3 Aprendizado de um Perceptron

O objetivo de aprendizado de um perceptron é a determinação dos pesos ideais para

cada sinal de entrada. O algoritmo de aprendizado atribui arbitrariamente pesos a cada

sinal de entrada, que são multiplicados pelos seus pesos correspondentes. O resultado,

peso vezes valor do sinal, é somado para calcular uma saída. A computação é representada

pelas seguintes equações:

f(x) = w1x1 + w2x2 + . . .+ wnxn

Em alguns casos é interessante fornecer pesos iniciais para direcionar o resultado

através de um viés x0

f(x) = x0 + w1x1 + w2x2 + . . .+ wnxn

O neurônio recebe um grande número de entradas, e então uma função de otimização

adequa os pesos usando funções matemáticas chamadas otimizadores, e a computação é

repetida com os novos pesos. Essa iteração continuamente otimiza os valores até que o

resultado seja satisfatório para o conjunto de entradas fornecido. Esse processo constitui o

aprendizado do neurônio.

32

2.3.4 Perceptron de Múltiplas Camadas

Uma rede neural artificial típica contém vários perceptrons. As entradas são processadas

por um grupo de neurônios e cada um deles processa as entradas de forma independente.

As saídas deste grupo de neurônios são alimentadas para outro neurônio ou camada

neurônios. Desta forma, a saída de uma camada atua como entrada para a próxima camada,

e é possível adicionar indefinidas camadas para treinar a rede neural. Essa organização de

neurônios em camadas é comumente conhecida como Perceptron de Múltiplas Camadas

(MLP), como mostra a Figura 4.

Figura 4 – Perceptron multicamadas

Modificado de (ANSARI, 2020)

MLPs são úteis pois, por exemplo, ao levarmos em consideração um único neurônio

com uma entrada, ele terá uma função de ativação que se assemelha a:

f(x) = w1x1 + x0

O que representa uma função linear. Entretanto, a maioria dos problemas encontrados no

mundo real não exibem comportamentos lineares, e Perceptrons de múltiplas camadas

modelam a não linearidade e podem abordar situações do cotidiano de forma mais precisa

do que modelos baseados em neurônios individuais e algoritmos de aprendizado de máquina

como regressão linear e regressão logística.

Aprendizado profundo é outra nomenclatura dada a uma rede neural artificial de várias

camadas ou perceptron de várias camadas, e diferentes tipos de sistemas são empregados

dependendo da arquitetura da rede neural (CONVOLUTIONAL. . . ,) e seu tipo de operação.

33

Por exemplo, redes neurais feed-forward, redes convolucionais, redes neurais recorrentes,

autoencoders e deep beliefs são tipos distintos de sistemas de aprendizado profundo.

Um MLP consiste em pelo menos três tipos de camadas: camada de entrada, camadas

ocultas e camada de saída. Pode haver mais de uma camada oculta e cada uma contém

um ou mais neurônios.

• Camada de entrada

Essa camada recebe a entrada de uma fonte externa, como, por exemplo, imagens.

Os inputs para esta camada são as características. Os neurônios na camada de

entrada não realizam nenhuma computação e apenas passam seus inputs para a

próxima camada. O número de neurônios na camada de entrada é igual ao número de

características, que, no caso da visão computacional, equivale ao número de pixels. A

Figura 4 mostra uma arquitetura de rede neural genérica.

• Camadas ocultas

As camadas entre as camadas de entrada e saída são chamadas de camadas ocultas.

Uma rede neural deve ter pelo menos uma camada oculta pois é essa camada que

gera o aprendizado e há os cálculos necessários nos neurônios para o aprendizado.

A complexidade e exigência de poder computacional aumenta com o número de

camadas.

• Camada de saída

A camada de saída é a última camada, e o número de neurônios na camada de saída

depende do tipo de situação para a qual a rede neural foi projetada. Para regressão,

onde a rede deve fazer a previsão de um valor contínuo, a camada de saída tem

apenas um neurônio. Já para problemas de classificação entre classes, a camada de

saída tem o mesmo número de neurônios que o número de classes.

2.3.5 Funções de ativação

A função de ativação determina se o neurônio associado deve ser ativado ou não com

base na relevância da entrada do neurônio para o modelo e normaliza a saída de cada

neurônio para um valor na faixa [0,1] ou [-1,1].

Várias funções matemáticas são usadas como ativação. As seguintes funções de

ativação são utilizadas pelo TensorFlow:

• Função de Ativação Linear

A função de ativação linear não é utilizada no aprendizado profundo pois apresenta

problema com a derivação. É comum utilizar o método de retropropagação, que

emprega uma técnica chamada descida de gradiente. Nesta técnica, há o cálculo da

34

derivada de primeira ordem da entrada, o que, no caso da função linear, resulta em

zero e torna impossível retroceder aos pesos das entradas.

Outro problema é a restrição à Linearidade: a última camada será uma função linear

da primeira camada, logo a rede é equivalente a apenas uma camada, o que não é

adequado para resolver problemas complexos.

f(x) = x0 + w1x1 + w2x2 + w3x3 + . . .+ wnxn

• Função de Ativação Sigmóide ou Logística

A função sigmóide resulta em um valor entre 0 e 1, o que torna a saída menos

sucinta à variações abruptas da entrada. Outra vantagem é que não gera um valor

constante a partir de uma derivada de primeira ordem, comportamento adequado

para deep learning com retropropagação. A maior desvantagem da função sigmóide

é que a saída não muda entre valores de entrada grandes ou pequenos, o que a

torna inadequada para casos em que o vetor de características recebidas pela função

contém valores grandes ou pequenos. Uma alternativa é normalizar seu vetor de

características para ter valores entre -1 e 1 ou entre 0 e 1.

s(z) =
1

1 + e−z

• TanH/Tangente Hiperbólica

Semelhante à função de ativação sigmóide, com a diferença de que o TanH é centrado

em zero, e, como consequência, ela modela entradas com valores pequenos, grandes

e neutros.

tanh(z) =
ez − e−z

ez + e−z

• Unidade Linear Retificada (Rectified Linear Unit, ReLU)

Caso z seja positivo, a função ReLU considera esse valor como saída, e, se for

negativo, a saída é zero. A saída varia entre 0 e infinito, e a vantagem desta função

de ativação que ela é computacionalmente eficiente e permite que a rede convirja, ou

seja, encontre os pesos ideais para operação do modelo, rapidamente. Além disso, o

ReLU é não linear.

A maior desvantagem da função ReLU é que o gradiente da função se torna zero

para entradas zero ou negativas, comportamento inadequado para retropropagação

quando a entrada possui valores negativos. Esta funçãoé amplamente utilizado no

treinamento da maioria dos modelos de visão computacional visto que os pixels de

imagem não têm valores negativos.

f(z) = max(0, z)

35

• Leaky ReLU

Leaky ReLU oferece uma pequena variação do ReLU. Em vez de anular o valor

negativo de z, ele o multiplica por um número pequeno, como 0,01. O Leaky ReLU

tem pequenos valores em sua parte negativa e permite a retropropagação para

entradas negativas, com a desvantagem de que o resultado do Leaky ReLU não é

consistente nesses valores.

• Unidade Linear Exponencial Escalonada (Scaled Exponential Linear Unit, SELU)

A função SELU gera saídas "auto-normalizadas", com média 0 e desvio padrão 1.

Isso implica que toda a rede exibe comportamento normalizado até a saída na última

camada.

Com esta função, o aprendizado é altamente robusto e permite treinar redes com

muitas camadas, visto que a auto-normalização torna-se eficiente em termos de

computação e tende a convergir mais rapidamente. Outra vantagem é que ela supera

os problemas de gradientes com variações abruptas ou que diminuem bruscamente

quando as características de entrada são muito altas ou muito baixas.

f(x) = 1.05070098 ·

1.67326324(ex − 1) para x ≤ 0

0 para x > 0

• Função de Ativação Softplus

A função de ativação softplus aplica suavização ao valor da função de ativação z e

utiliza o logaritmo do exponencial, também é chamado de função SmoothReLU. A

primeira derivada da função softplus é a mesma que a função de ativação sigmoidal.

ln(1 + ez)

• Softmax

Função que recebe um vetor de números reais como entrada, normaliza os valores

presentes em uma distribuição probabilística e gera saídas no intervalo (0,1). É

frequentemente usado como a ativação para a camada de saída de uma rede neural

de classificação, e seu resultado é interpretado como a probabilidade prevista de cada

classe.

f(x)i =
exi∑
j e

xj

2.3.6 Função de Erro

No aprendizado de máquina o erro é a diferença entre o resultado esperado e o resultado

previsto.

36

Erro = Resultado Esperado - Resultado Previsto.

O objetivo do aprendizado da rede é calcular valores otimizados de pesos, ou seja, que

resultam em erros mínimos. Durante o processo de aprendizado há o ajuste de pesos de

forma iterativa.

O ponto em que a derivada primeira da função de erro é zero é o objetivo ideal que indica

um mínimo e encontrar os pesos onde a função de erro é mínima é tarefa das funções de

erro, também são conhecidas como funções de perda, e são enquadradas em três principais

categorias:

Funções de Perda para Regressão: Para treinar modelos que desejam prever resulta-

dos contínuos.

Funções de Perda para Classificação Binária: Treina modelos que preveem entre

dois resultados, útil em casos como, por exemplo, detectar a presença de doenças.

Funções de Perda para Classificação Multiclasse: Usadas quando os modelos

precisam prever várias classes, como por exemplo na detecção de objetos.

2.3.7 Algoritmos de Otimização

O algoritmo de aprendizado otimiza a função de perda para encontrar pesos que minimi-

zem o valor da perda iterativamente. A função que otimiza a função de perda é chamada

algoritmo de otimização ou otimizador, que oferecem diferentes graus de precisão e

velocidade. Alguns conceitos são comuns aos algoritmos de otimização. (GOODFELLOW;

BENGIO; COURVILLE, 2016)

Mínimos Locais e Globais ocorrem pois há situações em que podem haver dezenas

ou até centenas de características para as quais os pesos precisam ser aprendidos, e,

nesses casos, a curva da função pode ter vários pontos que pareceriam mínimos, chamados

mínimos locais. O objetivo do algoritmo de descida de gradiente é encontrar o mínimo global.

Figura 5 – Função de perda com o gradiente em direção ao mínimo

Modificado de (ANSARI, 2020)

37

A Taxa de Aprendizado precisa ser cautelosamente selecionada, pois um valor grande

pode fazer com que o algoritmo oscile e não encontre o mínimo, enquanto um valor pequeno

torna o aprendizado lento. Um bom valor inicial para a taxa de aprendizado está entre 0,01

e 0,1, e deve ser ajustado conforme se faz necessário.

Regularização é uma maneira de controlar o efeito de um ou mais pesos grandes, que

interfeririam na previsão geral. O parâmetro chamado de regularização é adicionado na

função de custo para equilibrar os pesos que podem impactar a previsão, penalizando os

pesos grandes para reduzir seu impacto. A seguir estão alguns algoritmos de otimização e

suas características:

• Descida de Gradiente (Gradient Descent) Encontra pesos nos quais a função de

perda, ou função de custo, é mínima. O algoritmo calcula a derivada e se move ao

longo da curva, com sentido de movimento decidido pelo gradiente negativo, e a taxa

de aprendizado determina o tamanho desse deslocamento a cada iteração até que o

algoritmo encontre o custo mínimo final.

• Descida de Gradiente Estocástica (SGD) A descida de gradiente calcula os gra-

dientes de todas as amostras de treinamento em cada iteração, o que pode ser

computacionalmente custoso e até mesmo pode não ser viável. A SGD contorna

esse problema ao calcular os gradientes de um pequeno subconjunto de um conjunto

do treinamento que pode caber facilmente na memória através da randomização

do conjunto de dados de entrada para eliminar qualquer viés. É então calculado o

gradiente de uma única amostra de dados selecionado aleatoriamente ou de um

pequeno segmento dos dados.

• SGD com Momentum A SGD com momentum é uma extensão que controla a

oscilação e acelera a convergência, especialmente em torno de mínimos locais

profundos, visto que o momentum é um método que controla a oscilação através do

deslocamento do gradiente com operações distribuídas e paralelas que ajudam a

convergir o SGD mais rapidamente.

Segundo (GOODFELLOW; BENGIO; COURVILLE, 2016), o Momentum tem como ob-

jetivo resolver a variância no gradiente estocástico. Na Figura 5, as linhas de contorno

representam uma função de perda quadrática. O caminho vermelho que corta as cur-

vas indica o caminho seguido pela regra de aprendizado do momentum ao minimizar

essa função. Em cada etapa ao longo do caminho, é desenhada uma seta indicando a

direção que o gradiente desceria naquele ponto. Podemos observar que uma função

objetivo quadrática mal condicionada se assemelha a um vale ou desfiladeiro longo e

estreito com lados íngremes. O momentum atravessa corretamente o comprimento do

desfiladeiro, enquanto os passos do gradiente perdem tempo se movendo de um lado

para o outro ao longo do eixo estreito do desfiladeiro.

38

Figura 6 – Momentum utilizado para encontrar o mínimo do erro

Fonte: (GOODFELLOW; BENGIO; COURVILLE, 2016)

• Adaptive Gradient Algorithm (Adagrad) O algoritmo Adagrad aborda o problema

de definir a taxa de aprendizado calculando um valor adequada para cada parâme-

tro, atribuindo uma taxa maior para características pouco frequentes e uma taxa de

aprendizado menor para características mais frequentes, o que melhora o desem-

penho em problemas com gradientes esparsos, como em visão computacional ou

processamento de linguagem natural (NLP).

Uma desvantagem é que a taxa de aprendizado adaptativa tende a ficar muito pequena

ao longo do tempo, o que aumenta o tempo de treinamento do modelo consideravel-

mente.

• RMSProp O RMSProp apresenta uma melhoria em relação ao SGD com momentum,

pois restringe o movimento dos gradientes verticalmente, visto que, em uma curva

íngreme, um pequeno movimento na direção horizontal causará um grande movimento

na direção vertical. Assim, o movimento em ambas as direções não será desigual,

convergindo ao ponto mínimo mais rapidamente.

• Adaptive Moment (Adam) Projetado especificamente para aprendizado profundo, é

um dos otimizadores mais utilizados, pois combina o SGD com momentum e o RMS-

Prop: atualiza os pesos da rede iterativamente com base nos dados de treinamento,

ao invés de adaptar as taxas com base na média do primeiro momento, como no

RMSProp, esse otimizador utiliza a média dos segundos momentos dos gradientes.

39

De forma geral, o algoritmo Adam é fácil de implementar, eficiente computacional-

mente, com requisitos de memória baixos, invariante à escalonagem diagonal dos

gradientes, adequado para problemas grandes em termos de dados, parâmetros, ob-

jetivos não estacionários e problemas com gradientes ruidosos ou esparsos com parâ-

metros que geralmente exigem pouco ajuste. Fonte: https://arxiv.org/pdf/1412.6980.pdf

2.3.8 Retropropagação

O treinamento de uma rede neural necessita dos seguintes elementos: dados ou ca-

racterísticas de entrada; uma rede neural multicamada; uma função de erro. A rede atribui

pesos iniciais a cada característica de entrada, e, através do algoritmo de otimização, como

SGD ou Adam, a função de erro é otimizada para calcular o erro mínimo e atualizar os

pesos.

É então estimado o erro para que os pesos sejam atualizados. No método de retropropa-

gação, os gradientes dos pesos são calculados primeiro na última camada e os gradientes

da primeira camada são calculados por último. Os cálculos parciais do gradiente são reutili-

zados no cálculo do gradiente para a camada anterior. Esse fluxo reverso dos dados de

erro resulta em uma computação eficiente do gradiente em cada camada, os cálculos de

gradientes não são feitos independentemente em cada camada.

O erro da última camada é calculado primeiro pois mapeia as variáveis alvo do conjunto

de dados rotulado e, na camada oculta, não há variáveis alvo.

2.3.9 Redes Neurais Convolucionais (CNNs)

Uma Rede Neural Convolucional (CNN ou ConvNet) é um tipo de rede neural profunda

projetada para reconhecer padrões em dados que possuem uma forma de grade, como

imagens, e é particularmente eficaz em tarefas relacionadas à visão computacional, como

reconhecimento e segmentação de objetos, visto sua capacidade de aprender caracterís-

ticas hierárquicas e invariantes de translação em dados de grade, problema comumente

encontrado em outras abordagens. São compostas por camadas convolucionais, de pooling

(agrupamento) e totalmente conectadas. (VOULODIMOS, 2018)

• Camada Convolucional (Convolutional Layer): aplica filtros, chamados de kernels,

às partes da entrada, procurando padrões locais. Essa operação de convolução

permite que a rede aprenda características específicas, como bordas, texturas ou

padrões mais complexos.

• Camada de Pooling (Pooling Layer): reduz as dimensões da entrada e torna a

representação mais compacta, e em sua operação geralmente envolve a seleção do

valor máximo, max pooling, ou a média, average pooling, em uma região.

40

• Camada Totalmente Conectada (Fully Connected Layer): após as camadas convo-

lucionais e de pooling, a rede pode ter uma ou mais camadas totalmente conectadas,

que realizam a classificação final com base nas características aprendidas.

Figura 7 – Rede Neural Convolucional sobre imagem

Modificado de Athanasios Voulodimos, 2018

2.3.10 Saídas dos modelos de detecção de objetos

Os termos "bounding box,keypoints"e "masks"referem-se a diferentes aspectos da

representação e identificação de objetos em uma imagem que fazem parte das saídas e

resultados dos modelos de detecção. Modelos mais complexos, e, consequentemente, mais

exigentes computacionalmente, produzem mais dessas saídas, e é necessária a escolha de

uma rede que proporcione as informações pertinentes à aplicação.

• Bounding Box (Caixa Delimitadora): caixa retangular que envolve ou delimita a área

onde o modelo infere que o objeto está localizado em uma imagem, usado para indicar

a localização aproximada de um objeto especificando as coordenadas, geralmente

localizadas nos cantos, da caixa delimitadora.

• Keypoints (Pontos-chave): pontos específicos em um objeto ou região de interesse

que têm um significado distintivo escolhidos por serem identificáveis e usados para

descrever as características de uma área e localizar pontos anatomicamente significa-

tivos em objetos, por exemplo, cantos de um rosto. São úteis para estimar a pose ou

orientação de um objeto.

• Máscaras (Masks): imagens binárias que indicam a presença ou ausência de um

objeto em cada pixel, usadas para segmentar precisamente o que pertence a um

objeto específico, útil para quando é necessário distinguir a localização dentro da

caixa delimitadora.

41

Figura 8 – Máscaras e caixas delimitadoras.

Fonte: (ANSARI, 2020)

Figura 9 – Pontos chave na imagem.

Fonte: (ANSARI, 2020)

2.4 Rastreamento de Objetos

Após a etapa da detecção de objetos, o modelo retorna as coordenadas dos pixels das

extremidades do retângulo que cerca aquele elemento. Essas coordenadas são suficientes

para orientar a posição no caso em que há apenas um item de interesse na imagem;

entretanto, isso não se aplica ao caso em que há múltiplos exemplares da classe de

interesse em uma mesma imagem. Um dos campos da visão computacional que foca sobre

esta questão é o rastreamento de objetos.

Duas técnicas tradicionais para realizar o rastreamento são: o deslocamento médio

(mean shift) e o fluxo óptico (optical flow).

2.4.1 Deslocamento Médio

O deslocamento médio funciona a partir de detectar o objeto de interesse e extrair

um padrão morfológico, suas coordenadas e seu tamanho através da análise de pixels

em posições chave. Esse padrão é então procurado no próximo quadro em uma região,

conhecida como vizinhança, ao redor de onde estava o centro do objeto no quadro anterior,

42

e a porção de pixels nessa vizinhança com a melhor correspondência recebe a atribuição

da identidade do objeto. (ZHAO; WANG; HAN, 2013)

Entretanto, o método do deslocamento médio não é confiável caso o objeto saia da

região da vizinhança do objeto de interesse, então, caso ele se mova muito rapidamente,

será perdido. Além disso, também podemos destacar uma forte ineficiência em caso de

oclusões.

Figura 10 – Resultado do algoritmo de deslocamento médio sobre carro

Fonte: Ming Zhao, 2013

2.4.2 Fluxo Óptico

Outro método tradicional é o fluxo óptico. Ele difere do deslocamento médio pois leva

em consideração o movimento relativo dos objetos ao decorrer dos quadros anteriores. É

gerado um vetor de movimento entre o quadro presente e o quadro anterior, o que possibilita

o uso desses vetores para seguir e até prever a trajetória do objeto no próximo frame. (WU

et al., 2018)

Contudo, apesar da boa performance vista nos métodos tradicionais, eles são computa-

cionalmente complexos e sujeitos a ruídos, especialmente no caso do fluxo óptico, onde

43

detecções erradas do centro do objeto, seu tamanho e oclusões em uma pequena parte

dos quadros produz erros de grandes magnitudes.

Figura 11 – Campos de fluxo de imagem previstos pelo algoritmo de fluxo óptico

Fonte: Junjie Wu, 2012

2.4.3 Algoritmos de Predição de Trajetória

Para contornar a complexidade computacional e a sensibilidade a ruídos e oclusões,

diversos trabalhos pautados no rastreamento de objetos já foram propostos.

Essencialmente, o objetivo desses algoritmos é, por meio de uma sucessão de listas de

coordenadas que são atualizadas a cada inferência, atribuir um número de identificação

para cada conjunto de coordenadas a partir de comparações com as listas anteriores. Na

Tabela 1 há o comparativo dos algoritmos mais conhecidos, com métricas coletadas através

do Local Metrics for Multi-Object Tracking (VALMADRE et al., 2021).

2.4.4 SORT

O algoritmo SORT, Simple Online Real-time Tracking, foi o escolhido devido a sua

simplicidade em termos de biblioteca, o que torna seu desempenho substancialmente

melhor quando utilizado em sistemas onde o poder computacional é um recurso limitado e

é necessária para a operação o seu uso em tempo real. (BEWLEY et al., 2016)

• Detecção

44

Tabela 1 – Comparação de algoritmos de rastreamento de objetos

Algoritmo Vantagens Desvantagens

Tracktor++ Boa acurácia
3 FPS, ideal para execuções que não
precisam ser em tempo real

Track RCNN
Boa acurácia e com
segmentação

1.6 FPS

JDE
12 FPS, performance para
tempo real

Baixa resolução, 1088x608

SORT Boa velocidade e acurácia
Sensível à oclusões e troca identidade
de objetos com frequência

DeepSORT
16 FPS, boa velocidade,
acurácia e lida bem
com oclusões

Necessita de uma GPU para uso
em tempo real

A detecção é feita através da técnica de visão computacional selecionada, e, quanto

menores os erros e maior a qualidade das coordenadas, melhor serão os resultados

ao final

• Estimativas

Nesta etapa, é utilizado o filtro Kalman. O filtro Kalman utiliza um modelo que atribui ao

objeto de interesse um modelo de movimento que se baseia em velocidade constante,

e, caso haja oclusão, irá atribuir estimativas de acordo com os dados de movimento

que foram previamente captados.

Quando é possível visualizar o elemento de interesse, é fornecido ao modelo os dados

de movimentação para alimentá-lo. No caso onde há obstrução parcial, é utilizado

tanto o modelo quanto os dados captados pelo sensor para predizer a posição, e, caso

esteja totalmente oculto do sensor, os dados do modelo são utilizados na predição.

• Associação de elementos

Cada conjunto de coordenadas correspondentes às delimitações dos objetos detec-

tados no último quadro têm, através do filtro Kalman, suas coordenadas previstas

comparadas com os objetos presentes detectados no quadro atual.

A matriz de custo de atribuição é então calculada como a distância de intersecção

sobre união (IoU) entre as localizações previstas e as existentes. A atribuição é

feita usando o algoritmo Húngaro, e, quanto mais sobreposição entre as caixas

delimitadoras houver, maior o percentual de confiança inferido sobre aqueles dados

como pertencentes ao mesmo objeto.

• Ciclo de vida da identidade dos elementos

A entrada e saída de objetos implica na necessidade de criar ou eliminar identidades

conforme necessário. Elementos que possuem uma sobreposição com outras caixas

45

Figura 12 – Intersecção sobre União

Modificado de (ROSEBROCK,)

delimitadoras menores que um valor de IOU mínimo indicam a existência de um item

ainda não rastreado, e é então criado um rastreador.

O rastreador tem, inicialmente, seu modelo de velocidade ajustado para zero com

um grande grau de incerteza, e passa por um período probatório onde o algoritmo

tenta associá-lo a detecções previamente existentes até que acumule evidências

suficientes para classificá-lo como sendo, de fato, um elemento inédito. Dessa forma,

são evitados falsos positivos.

Além disso, caso um rastrador não detecte seu correspondente objeto por uma deter-

minada quantidade de quadros, aquela identidade será eliminada, e, caso apareça

novamente, será atribuído a ele uma nova identificação.

• SORT e DeepSORT

DeepSORT tem 45% menos trocas de identidade (WOJKE; BEWLEY; PAULUS, 2017),

entretanto, para utilizá-lo em tempo real é necessária uma GPU. Apesar da placa

utilizada no projeto dispor de uma GPU, ela não possui capacidade computacional

suficiente para utilizar o DeepSORT e realizar inferências do modelo de detecção de

objetos em tempo real.

2.5 TensorFlow

TensorFlow é uma biblioteca de open-source para aprendizado de máquina e aprendi-

zado profundo desenvolvida pelo Google Brain baseado no Keras, uma API de alto nível

para construção e treinamento de modelos de redes neurais (ABADI et al., 2015). Teve

46

início em 2011 e foi aberto ao público em 2015. Projetado para simplificar e otimizar a

implementação de modelos de aprendizado de máquina com arquiteturas versáteis que

possibilitam a criação e treinamento de redes neurais profundas para uma variedade de

aplicações, desde visão computacional até processamento de linguagem natural.

O TensorFlow manipula dados na forma de tensores, que são estruturas multidimensio-

nais semelhantes a arrays. Apesar de sua base de operações de baixo nível, ele fornece

APIs de alto nível, como Keras, para a construção rápida de modelos complexos, sendo

amplamente utilizado em uma variedade de campos e aplicações, como:

• Aprendizado Profundo: treinamento de redes neurais profundas em aplicações

diversas.

• Análise Preditiva: prever tendências e otimizar processos.

• Processamento de Linguagem Natural (NLP): análise de texto, tradução automática

e criação de chatbots.

• Reconhecimento de Fala: sistemas que transcrevem voz para texto para diversos

usos, como a combinação dessa funcionalidade com outros algoritmos de controle.

• Visão Computacional: segmentação de imagem, reconhecimento e detecção de

objetos, que será o foco desta tese.

O Keras foi inicialmente desenvolvido como uma biblioteca independente, mas, a partir

do TensorFlow 2.0, foi incorporado como sua API oficial. Com intuito de fornecer uma

interface intuitiva para a construção de redes neurais, foi projetado para ser modular, o

que facilita a modificação e implementação de diferentes arquiteturas de rede. Dessa

forma, o TensorFlow serve como uma aplicação de alto nível para definição, treinamento

e avaliação de modelos e permite a fácil transição de protótipos para implementações em

larga escala, pois suas configurações são flexíveis para diferentes requisitos de sistemas,

com capacidade de operar em CPUs, GPUs e TPUs proporciona versatilidade na escolha

de hardware de acordo com a aplicação e recursos disponíveis. Há também uma versão da

biblioteca menos computacionalmente exigente, o TensorFlow Lite.

2.6 ROS

O ROS é uma plataforma de software open-source projetada para facilitar o desenvolvi-

mento de robôs inicialmente desenvolvido pela Willow Garage, uma empresa de pesquisa

em robótica, agora é mantido pela Open Robotics, organização sem fins lucrativos. Seu

código fonte é aberto e permite que desenvolvedores contribuam, adaptem e aprimorem a

plataforma, sendo ela compatível com diversos sistemas operacionais, incluindo Linux, com

47

Figura 13 – Diagrama conceitual do funcionamento do TensorFlow

Modificado de (TENSORFLOW. . . ,)

foco na versão Ubuntu, macOS e algumas implementações para Windows, o que aumenta

a acessibilidade do ROS.

A plataforma promove o compartilhamento de códigos entre desenvolvedores através

de pacotes de software de diferentes projetos e equipes, estratégia que acelera o desenvol-

vimento ao eliminar a necessidade de recriar soluções para problemas que aparecem de

forma frequente no desenvolvimento de projetos.

Ademais, há o fornecimento de uma camada de abstração que separa o software do

hardware subjacente, possibilitando a escrita de códigos para tarefas específicas sem

conflitos com as especificidades de hardware. Nesse sentido, há também a facilitação da

comunicação entre diferentes componentes do sistema, permitindo que módulos distintos

troquem informações de maneira eficiente e sem problemas, o que será de utilidade para

que o algoritmo desenvolvido nesta tese possa ser facilmente integrado ao sistema alvo,

pois sua arquitetura modular facilita a adaptação a diferentes hardwares.

A plataforma possui diferentes funcionalidades para comunicação e integração de

algoritmos que compõem o software do robô que serão úteis para o projeto:

• Nós (nodes): processos executáveis individuais que realizam tarefas específicas

diversas, desde controlar um sensor até coordenar todo o comportamento do sistema.

Os nós se comunicam por meio de tópicos ou serviços, permitindo uma arquitetura

distribuída.

• Tópicos (Topics): canais de comunicação assíncrona através dos quais os nós

trocam mensagens. Nós podem publicar ou assinar no tópico para, respectivamente,

48

enviar ou receber as mensagens e seus dados.

• Mensagens (Messages): definem o formato das informações e variáveis transmitidas

entre nós. Cada tópico tem um tipo de mensagem, e, consequentemente, um tipo

de dado, associado que especifica como as informações devem ser organizadas e

interpretadas.

• Serviços (Services): permitem comunicação síncrona, onde um node solicita a

execução de uma função a outro nó, como solicitar dados de sensores ou enviar

comandos de controle.

Figura 14 – ROS: Mensagens entre nós Publisher e Subscriber

Modificado de (YAMASHINA et al., 2015)

49

3 DESENVOLVIMENTO

Com a fundamentação teórica a respeito das ferramentas computacionais, bibliotecas e

plataformas utilizadas, o presente capítulo tem o objetivo de expor as etapas do procedi-

mento de desenvolvimento do algoritmo de visão, funcionalidades, limitações encontradas e

aspectos da lógica por trás do código elaborado.

3.1 Hardware utilizado

3.1.1 Máquina local

Apesar da aplicação destino do algoritmo ser em um sistema embarcado, muitas tarefas

de desenvolvimento e treino podem ser realizadas em outra máquina que dispõe de maiores

recursos de processamento. Para o desenvolvimento da tese, foi usado um notebook com

as seguintes especificações:

• Nome do Sistema Operacional: Microsoft Windows 11 Home Single Language

• Modelo do sistema: Nitro AN515-57

• Processador: 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz, 2304 Mhz, 8

Núcleo(s)

• GPU: NVIDIA GeForce RTX 3050 Laptop GPU

É importante levar em consideração o sistema operacional e a GPU, visto que a maioria

das bibliotecas para desenvolvimento de aplicações em visão computacional e os principais

usos de ROS são projetados para uso em Linux. Portanto são necessárias adaptações para

uso do sistema operacional disponível, Windows 11.

3.1.2 Raspberry Pi 4B

A Raspberry Pi 4B, da Raspberry Pi Foundation (RASPBERRY PI FOUNDATION,), é

uma placa computacional compacta com diversas aplicações que visam a portabilidade

e acessibilidade, como em projetos de Internet das Coisas (IoT), servidores domésticos,

aplicações industriais leves e robôs. Algumas especificações da placa utilizada no projeto:

• Sistema operacional: Raspberry Pi OS with desktop, October 10th 2023

O sistema operacional oficial da Raspberry é o Raspberry Pi OS, entretanto, é possível

instalar outros, visto que ele é alojado no cartão SD que deve ser inserido na placa.

• Debian version: 12 (bookworm)

• Processador: quad-core ARM Cortex-A72, 64 bits

50

• RAM: 4GB

A Raspberry Pi, através dos sistemas operacionais baseados em Linux, é compatível

com Python, TensorFlow e ROS, o que permite que ela implemente projetos envolvendo

redes neurais, visão computacional e outras aplicações de ML, e sua compatibilidade com

ROS possibilita seu uso como o cérebro de um robô, integrando sensores, motores e

algoritmos em um ecossistema coeso.

Para captar as imagens e fornecê-las ao algoritmo foi obtida uma das câmeras oficiais

da Raspberry, a câmera para Raspberry Pi Rev 1.3.

Figura 15 – Raspberry Pi 4B

Fonte: Autor

3.2 Treinamento de modelo

O treinamento do modelo de aprendizado profundo é um processo computacionalmente

custoso e normalmente é necessário dias e, em alguns casos, até mesmo semanas, para

que seja concluído e obtenha resultados satisfatórios. Entretanto, é possível utilizar modelos

existentes com pesos bem definidos para que serviam como ponto de partida do treinamento

de uma rede. O TensorFlow, em seu repositório oficial, disponibiliza alguns desses modelos.

O repositório contém modelos treinados para realizar a inferência de diversas classes.

Ainda assim, em termos de projeto, o intuito nesta tese de passar pelo processo de treina-

mento é para que, caso o robô tenha o objetivo de seguir um item que não está presente nos

modelos pré-treinados disponíveis publicamente, seja possível adicionar novos elementos

a partir do treino de uma rede. Mais detalhes sobre treinamento de modelos podem ser

encontrados no Apêndice C.

É pertinente a ressalva de que objetos que possuem características geométricas bem

definidas e que pouco variam com mudanças no ângulo de captura e iluminação são expres-

sivamente mais simples para o aprendizado. Para testar um cenário de maior complexidade,

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

51

o objetivo do treinamento da rede será a detecção de pombos, visto que a aquisição de

imagens deles em ambiente urbano é simples e eles tendem a variar em cor e forma de

acordo com diferentes direções de observação.

Figura 16 – Exemplo de imagem utilizada para realizar o treinamento da rede

Fonte: Autor

3.2.1 Dataset

Para que a rede seja treinada são necessárias não apenas as imagens, mas também a

indicação dos objetos de interesse presentes, suas coordenadas e categorias dos elementos.

Além disso, é necessária a divisão entre imagens para treinamento e para validação, pois

se todos os dados fossem usados no treinamento ocorreria o vazamento de informações

e o modelo não seria capaz de verificar sua capacidade de realizar inferências, e, por

consequência, não seria devidamente otimizado. Uma prática recomendada é coletar uma

quantidade acima de 200 imagens e separar em torno de 70% das imagens para treino e

30% para validação.

Antes do treino, é necessário definir o ground truth, parte da imagem que contém o

objeto de interesse, e salvar os dados que contém as informações das múltiplas imagens.

Isso é feito através da biblioteca labelimg.

• Treinamento O conjunto de treino é usado para treinar o modelo, ajustando seus

pesos e parâmetros iterativamente. É importante não deixar o treinamento acontecer

por mais tempo do que o necessário, pois, nesse caso, há o overfitting, que é quando

a rede aprende a identificar as imagens utilizadas ao invés de aprender a generalizar.

52

• Validação As imagens de validação fornecem uma avaliação imparcial do desempe-

nho do modelo com diferentes configurações e são usadas como uma estimativa do

desempenho futuro durante a execução dele. Após cada iteração de treinamento o

desempenho no conjunto de validação é verificado e o modelo é ajustado.

3.2.2 Uso de modelos pré-treinados

Treinar um modelo partindo de um já previamente treinado é um processo chamado de

"transferência de aprendizado"e é uma forma de economizar recursos computacionais e,

consequentemente, tempo. Modelos pré-treinados, especialmente em conjuntos de dados

massivos, já aprenderam muitas características úteis e, quando treinado previamente sobre

grandes conjuntos de dados, como o EfficientDet treinado sobre o MS COCO utilizado (LIN

et al., 2014), tendem a aprender características gerais e úteis.

Além disso, partir dos pesos já estabelecidos faz com que o modelo possa ser ajustado

incrementalmente a fim de cumprir tarefas específicas e adaptar o modelo para a nova

tarefa sem perder completamente o conhecimento prévio. Não só isso, há também o efeito

de regularização, especialmente quando os dados de treino são limitados, ajuda a evitar o

overfitting e melhora a capacidade de generalização do modelo.

3.2.3 TensorBoard

O TensorBoard é uma ferramenta de visualização de métricas do TensorFlow, uma das

suas principais utilidades é monitorar métricas importantes durante o treinamento de um

modelo, como a função de perda. Nela, também é possível verificar quais imagens estão

sendo analisadas e sendo utilizadas para treinar o modelo no momento.

Observar o gráfico da função de perda é uma boa ideia para que se tenha uma boa

ideia de quando é o momento adequado para se parar o treino e evitar o overfitting. Após

alguns dias, o gráfico tende a convergir para um valor médio e não variar expressivamente.

No caso, o treinamento da rede ocorreu durante cinco dias.

Após realizar o treinamento da rede e exportar o modelo é possível executar inferências

através dele. No capítulo 4 há o resultado da rede de teste treinada para inferência de

pombos urbanos. Entretanto, a fim de aumentar a versatilidade e variedade de objetos para

detecção, será utilizado um modelo previamente treinado da biblioteca do TensorFlow que

realiza inferências sobre o conjunto de dados MS COCO.

3.3 Modelos e diferenças

Entre diversos aspectos, os modelos de detecção de objetos diferem em aspectos como

a arquitetura, ou seja, número de camadas e de perceptrons dentro de cada uma delas,

método de geração de regiões de interesse propostas, função de ativação, função de perda,

53

Figura 17 – Tensorboard - Gráfico da função de perda

Fonte: Autor

eficiência, precisão e velocidade. Na Tabela X, encontram-se alguns modelos e parâmetros

comparativos. (KRIZHEVSKY; SUTSKEVER; HINTON, 2012)

Devido à capacidade computacional da placa de computação que será utilizada, o código

será desenvolvido sobre um dos modelos de menor exigência de processamento: o SSD

MobileNet v2 320x320. Ainda assim, o algoritmo será desenvolvido de forma a permitir

facilmente a troca de modelo, caso se faça necessária maior confiabilidade das previsões.

3.4 Algoritmo de Visão

Com o intuito de elaborar um código com a maior versatilidade de usos possíveis e

que se adapte a diferentes necessidades e interesses, o algoritmo desenvolvido foi feito

de forma a facilitar a implementação de diferentes modelos, configurar parâmetros para

operação e modos de funcionamento. Além disso, a placa de computação Raspberry Pi 4B

possui recursos computacionais relativamente escassos e, caso outros códigos necessários

54

Tabela 2 – Comparação de performance de modelos de detecção de objetos

Algoritmo
Detector de
Objeto

Treinado
sobre o
Dataset:

mAP

Velocidade do
Teste
(Segundos
por Imagem)

Quadros por
Segundo
(FPS)

Aplicável em
vídeos em
tempo real

R-CNN COCO 2007 66,0% 32,84 0,03 Não

Fast R-CNN
COCO 2007
and 2012

66,9% 1,72 0,60 Não

Faster R-CNN
(VGG-16)

COCO 2007
and 2012

73,2% 0,11 9,1 Não

Faster R-CNN
(RestNet-101)

COCO 2007
and 2012

83,8% 2,24 0,4 Não

SSD300
COCO 2007
and 2012

74,3% 0,02 46 Sim

SSD512
COCO 2007
and 2012

76,8% 0,05 19 Sim

YOLO
COCO 2007
and 2012

73,4% 0,02 46 Sim

YOLOv2
COCO 2007
and 2012

78,6% 0,03 40 Sim

YOLOv3
608x608

COCO 2007
and 2012

76,0% 0,029 34 Sim

YOLOv3
416x416

COCO 2007
and 2012

75,9% 0,051 19 Sim

Fonte: (ANSARI, 2020)

para o funcionamento do robô necessitem de mais processamento, é possível ajustar o

quanto o algoritmo de visão está consumindo através da troca do modelo de inferência ou

mesmo adicionando um atraso entre cada execução.

3.4.1 Ambiente de Desenvolvimento

Uma das características do TensorFlow e suas aplicações é que suas funções são

particularmente sensíveis às versões de outras bibliotecas utilizadas, como, por exemplo,

Numpy, SciPy, OpenCV, entre outros. O uso de um recurso de algum desses pacotes em

versão mais ou menos atualizada em relação ao TensorFlow facilmente causa conflitos

de versões, e é necessária a alteração da versão, seja para mais recente ou mais antigo.

No Apêndice D se encontram as versões instaladas que utilizaram todos os recursos

empregados no código desenvolvido sem conflitos de versões.

O Conda, desenvolvido pela Anaconda Inc. (ANACONDA. . . , 2020), foi utilizado para

gerenciar o ambiente virtual em que os pacotes estão instalados. Um dos benefícios do

uso do gerenciador de ambientes e pacotes são os serviços de compatibilidade entre

versões e o uso de diferentes distribuições do Python em cada ambiente, pois o TensorFlow

55

e bibliotecas adjacentes necessitam de variantes específicas que estão disponíveis em

apenas algumas versões do interpretador.

3.4.2 Detecção de Objeto

O código foi configurado para utilizar, na máquina com o sistema operacional Windows

11, a webcam. A biblioteca do OpenCV permite o uso de câmeras USB através da função

empregada, mas não possui suporte para dispositivos fora dessa categoria, e, portanto, são

necessárias adaptações para o uso de outros tipos de sensores de imagens.

Foi reservada uma linha para seleção do modelo, que pode ser facilmente substituído por

outros do repositório oficial do TensorFlow ou por modelos customizados. O procedimento de

download e uso de diferentes modelos se encontram nos Apêndices B e C, respectivamente.

Foi escolhido inicialmente o detector de objetos SSD MobileNet v2 320x320.

Caminho ate o modelo

detect ion_model = load_model (’ ssd_mobilenet_v2_320x320

_coco17_tpu − 8 \ \ saved_model ’)

A inferência dos objetos é realizada sobre cada quadro do vídeo em tempo real e trata

cada captura como uma imagem isolada. O conjunto de imagens sobre o qual o modelo

foi treinado, MS COCO, possui 81 classes, e durante a inferência todas elas são indicadas

através das caixas delimitadoras.

É interessante ressaltar que o modelo gera diversas proposições de objetos com dife-

rentes probabilidades associadas a cada um deles. Caso a probabilidade associada seja

baixa, o objeto não é exibido, pois entende-se que o padrão encontrado não é assertivo o

suficiente para ser considerado, de fato, um elemento da classe.

Ao final de cada inferência, temos uma saída contendo todos os objetos propostos,

probabilidades e coordenadas dos quatro cantos das caixas delimitadoras em uma variável

do tipo dicionário chamada output_dict. Entretanto, como descrito no Capítulo 2, esse

dicionário não nos fornece uma forma de diferenciar e acompanhar dois ou mais objetos da

mesma classe, e isso deve ser feito através de um algoritmo de rastreamento.

Run in fe rence

o u t p u t _ d i c t = model (i npu t_ tenso r)

3.4.3 Rastreamento de Objeto

O algoritmo SORT possui características que o tornam apropriado para aplicações

que demandam velocidade, simplicidade, detecção de múltiplos objetos e capacidade de

execução em tempo real, mesmo em ambientes computacionais limitados, visto que sua

56

(a) Imagem original do repositório do TensorFlow (b) Inferência do modelo SSD MobileNet v2

Figura 18 – Inferência do modelo sobre imagem

abordagem baseada em equações e bibliotecas de operações matemáticas base permitem

uma resposta rápida a mudanças nas condições do ambiente, projetado para aplicações

em que é necessário o rastreamento de objetos em tempo real, fornecendo resultados com

baixas latências sem sobrecarregar a capacidade do hardware disponível.

Algumas bibliotecas que compõe o SORT incluem:

• numpy

• scikit-image==0.17.2

• filterpy==1.4.5

• lap==0.4.0

Para utilizar o SORT é necessário fornecer ao objeto criado para realizar o rastreamento

a lista de coordenadas das caixas delimitadoras encontradas na imagem, que se encon-

tram após a inferência no output_dict. O rastreador irá retornar as mesmas coordenadas

associadas a um número ID, e, através dele, será possível fazer o acompanhamento dos

objetos, visto que cada um está associado a um objeto distinto.

Entretanto, em caso de oclusões ou desaparecimento e reaparecimento de um objeto,

um novo ID será associado a ele.

I ns t a n c i a de SORT

mot_t racker = Sor t ()

(Codigo que separa as coordenadas de in te resse)

Envia a l i s t a ao a lgo r i tmo de t r a c k i n g

t rack_bbs_ ids = mot_t racker . update (de tec t i ons)

57

3.4.3.1 Critérios

Um importante aspecto do objetivo do robô de seguir um objeto se beneficia de forma

expressiva em termos de versatilidade através do uso de redes neurais. Através dos objetos

existentes no MS COCO, é possível implementar o critério com base nas classes presentes.

Por exemplo, aqui faremos com que o algoritmo observe os elementos da classe "person".

Envia a l i s t a de ob je tos sob o a lgo r i tmo de t r a c k i n g

para o a lgo r i tmo que se lec iona um alvo com o modo de

operacao 2

t a r g e t = t a r g e t _ t r a c k i n g (t racked_ob jec ts , ’ person ’ , 2)

Entretanto, caso haja mais de um elemento desta classe, apenas a categoria não

será o suficiente para determinar qual elemento presente será o alvo, e em decorrência

do comportamento de troca e novos IDs o robô não conseguirá determinar um número

específico de forma autônoma.

Para contornar esse problema, no código foram configurados três modos de operação

que podem ser trocados que levam em consideração os IDs da classe alvo:

• Modo 0 O Modo 0 tornará como alvo o primeiro objeto da classe de interesse que for

detectado, ou seja, o com o menor ID presente.

i f mode == 0:

t a r g e t _ i d = min (t a rge t_ l abe led [: , 0])

for x , (id , x1 , y1 , x2 , y2 , score)

in enumerate (t a rge t_ l abe led) :

i f id == t a r g e t _ i d :

return (id , x1 , y1 , x2 , y2 , score)

• Modo 1 O Modo 1 irá definir como alvo o último objeto da classe a entrar na visão,

ou seja, o com o maior ID. Vale a ressalva de que, caso haja uma troca de ID de um

objeto já dentro da visão, ele trocará para esse objeto existente previamente mas que

teve seu número de identificação renovado.

e l i f mode == 1:

t a r g e t _ i d = max(t a rge t_ l abe led [: , 0])

for x , (id , x1 , y1 , x2 , y2 , score) in

enumerate (t a rge t_ l abe led) :

i f id == t a r g e t _ i d :

return (id , x1 , y1 , x2 , y2 , score)

58

return 0

• Modo 2 O Modo 2 tornará o objeto com a maior probabilidade associada de ser da

classe de interesse como alvo.

e l i f mode == 2:

max_labeled_score = max(t a rge t_ l abe led [: , 5])

for x , (id , x1 , y1 , x2 , y2 , score)

in enumerate (t a rge t_ l abe led) :

t a r g e t _ i d = id i f f l o a t (score) ==

f l o a t (max_labeled_score) else None

return (id , x1 , y1 , x2 , y2 , score)

3.4.3.2 Coordenadas extraídas

Após a definição do objeto alvo, a saída da função serão as coordenadas e probabilidade

da inferência, e, a partir dessas coordenadas separadas das demais, o robô terá um meio

de se localizar em relação ao alvo.

A forma proposta para realizar a tarefa de seguir o objeto de acordo com os critérios

definidos é, a partir das coordenadas alvo e do alinhamento da frente do robô com a

câmera, realizar a subtração das coordenadas de centro da caixa delimitadora do elemento

de interesse das coordenadas de centro da imagem. Dessa forma, será possível saber o

quanto será necessário ajustar a trajetória para que consiga chegar até o objetivo.

[Centro Horizontal do Objeto] = [Coordenada X menor + Coordenada X maior] / 2

[Centro Vertical do Objeto] = [Coordenada Y menor + Coordenada Y maior] / 2

[Ajuste Horizontal da Trajetoria] = ([Dimensão Horizontal da Imagem] / 2) - [Centro

Horizontal do Objeto]

[Ajuste Vertical da Trajetoria] = ([Dimensão Vertical da Imagem] / 2) - [Centro Vertical

do Objeto]

3.4.4 Predição de trajetória

Uma funcionalidade otimizadora do movimento do dispositivo consiste em não levar

em consideração apenas a posição do objeto, como também sua velocidade e, então,

adaptar o rumo para mirar na posição futura prevista. Uma das alternativas para cumprir

esse propósito é um dos algoritmos que compõem o SORT, o filtro Kalman, entretanto, são

necessárias adaptações para utilizá-lo sobre um alvo específico de forma a resultar na

previsão em um intervalo desejado.

59

Figura 19 – Ajuste de trajetória através das coordenadas de centro e do objeto

Fonte: Autor

(a) Algoritmo que leva em
consideração a posição atual

(b) Algoritmo que utiliza as coordenadas
previstas

Figura 20 – Uso do filtro Kalman para otimização do ajuste de trajetória e perseguição do
objeto alvo em movimento.
Fonte: Autor

60

3.4.4.1 Filtro Kalman

De forma semelhante ao algoritmo do SORT, para utilizar o filtro Kalman e realizar

predições de trajetória também é necessário fornecer uma lista de coordenadas. Entre-

tanto, neste caso os números fornecidos devem pertencer apenas ao objeto de interesse

determinado anteriormente.

Cada conjunto de posições informadas ao filtro devem estar temporalmente espaçadas

de acordo com o quão distante do quadro presente seja a próxima previsão. Em outras

palavras, caso nosso interesse seja saber a estimativa de posição do objeto daqui a 5

segundos, as coordenadas da lista devem ser coletadas e enviadas seguindo esse intervalo

de tempo.

3.4.4.2 Cálculo de FPS

A biblioteca do OpenCV não possui, de forma nativa, uma forma de verificar os quadros

por segundo de um vídeo, o que torna então necessária a implementação dessa função a

partir da análise da velocidade de execução do algoritmo.

Isso é feito através da criação de marcos temporais no início e fim da execução, e, com

a informação de quanto tempo um laço demora para ser concluído, é possível calcular

quantos quadros por segundo o vídeo está sendo executado.

Calculo do FPS, t recho executado

a cada i n i c i o do loop do a lgo r i tmo

Var iave l para c a l c u l a r o FPS

FPS_frame_count = 0

Quantidade de frames a serem con tab i l i zados no ca l cu lo

FPS_frame_amount = 5

FPS = 0

i f FPS_frame_count == 0:

FPS_start = t ime . t ime ()

FPS_frame_count = 0

FPS_frame_count += 1

e l i f FPS_frame_count < FPS_frame_amount :

FPS_frame_count += 1

else :

FPS_end = t ime . t ime ()

FPS = FPS_frame_amount / / (FPS_end − FPS_start)

FPS_frame_count = 0

61

A partir do FPS do vídeo, temos uma forma de associar o número de quadros, ou seja,

de vezes que o laço de repetição foi executado, com o intervalo de tempo decorrido. Dessa

forma, o algoritmo saberá em que momentos fornecer as coordenadas ao filtro Kalman para

que a previsão seja feita no espaçamento temporal desejado.

Var iave l que con t ro l a o i n i c i o do F i l t r o Kalman

Kalman_start = False

I n t e r v a l o de tempo ent re os r e g i s t r o s e as prev isoes

Kalman_time = 0.5

Var iave l que conta os frames dentro desse i n t e r v a l o de tempo

Kalman_frame_count = 0

Quantidade de frames correspondente ao i n t e r v a l o

de tempo ent re as prev isoes

do F i l t r o Kalman

Kalman_frame_amount = i n t (FPS* Kalman_time)

i f Kalman_frame_count >= Kalman_frame_amount :

i f Kalman_start is False :

Kalman_start = True

Kalman_Fi l te r = KalmanBoxTracker ([t a r g e t _ r e g i s t e r [0 , 0] ,

t a r g e t _ r e g i s t e r [0 , 1] ,

t a r g e t _ r e g i s t e r [0 , 2] ,

t a r g e t _ r e g i s t e r [0 , 3]])

t a r g e t _ r e g i s t e r = np . empty ((0 , 4))

Kalman_frame_count = 0

else :

Ka lman_Fi l te r . update ([t a r g e t _ r e g i s t e r [0 , 0] ,

t a r g e t _ r e g i s t e r [0 , 1] ,

t a r g e t _ r e g i s t e r [0 , 2] ,

t a r g e t _ r e g i s t e r [0 , 3]])

pr in t (Ka lman_Fi l te r . p r e d i c t ())

t a r g e t _ r e g i s t e r = np . empty ((0 , 4))

Kalman_frame_count = 0

else :

Kalman_frame_count += 1

62

3.4.4.3 Considerações

Este método para prever e se adequar ao movimento aparente do objeto deve levar em

consideração o movimento relativo do objeto em relação à câmera, pois, caso o objeto esteja

parado e o robô ajuste sua trajetória para que ele se encontre no centro, é possível que

acabe sendo percebido um movimento relativo mesmo que o elemento esteja em repouso.

3.5 Implementação do ROS

A plataforma de desenvolvimento do ROS possui diversas funcionalidades, como si-

mulação, modularização de funcionalidades e integração de algoritmos. Neste projeto,

a funcionalidade de maior interesse é a comunicação e troca de informações entre os

diferentes códigos.

Um dos aspectos que torna os projetos de ROS altamente intercambiáveis é que há

uma organização de pastas e arquivos padronizados. Há diversos benefícios em utilizar o

ambiente ROS ao invés de colocar todas as funcionalidades dentro de um mesmo arquivo,

como, por exemplo, maior facilidade na hora de editar funções e mesmo integrar novas ao

sistema.

Figura 21 – Organização de um workspace (espaço de trabalho) ROS

Modificado de (ANWAR, 2021)

3.5.1 Publisher Node

Para que o algoritmo de visão atue em conjunto com outros códigos ele deverá disponi-

bilizar os dados de interesse, as coordenadas, para que outros executáveis sejam capazes

de visualizá-los. Isso é possível ser feito implementando a funcionalidade de publicação em

um tópico. O código feito, dentro de um ambiente ROS, é chamado de node, e se torna um

publisher node que envia mensagens, estruturas de dados organizados de forma específica,

a um tópico.

63

Figura 22 – Pastas do projeto

Fonte: Autor

Outros códigos são capazes de se inscrever e ler mensagens publicadas no tópico,

sendo então chamados de subscriber node.

def pub l i sh_ob jec t_da ta (ta rge t_c lass , x , y , x_sor t , y_sor t) :

Cr ia ob je to pub l i she r

(Nome do top ico , t i p o da mensagem, quantas

mensagens da para ad i c i ona r na f i l a)

pub_coord = rospy . Pub l i sher (’ ob j_coord ina tes ’ ,

Obj_coordinates , queue_size =10)

I n i c i a o node

(Nome do node , anonymous − c r i a um nome caso

haja mais de um node publ icando)

rospy . i n i t _node (’ coord_pub l isher ’ , anonymous=True)

Unidade em Hz

r a te = rospy . Rate (1)

Aviso que o node f o i i n i c i a d o

rospy . l o g i n f o (" Pub l i sher i n i c i a d o

e publ icando coordenadas do alvo ")

while not rospy . is_shutdown () :

msg_obj_coord = Obj_coord inates ()

I n s i r a as informacoes

64

cr iadas no Obj_coordinates .msg

msg_obj_coord . t a rge t_c l ass = t a rge t_ c l ass

msg_obj_coord . x = x

msg_obj_coord . y = y

msg_obj_coord . x_pred ic ted = x_sor t

msg_obj_coord . y_pred ic ted = y_sor t

pub_coord . pub l i sh (msg_obj_coord)

ra te . s leep ()

3.5.2 Message

A mensagem, message, contém a informação de quais tipos de dado e sequência que

devem ser enviados ao tópico. Para as coordenadas, é interessante que sejam no formato

float, para caso se deseje trabalhar com coordenadas normalizadas, ou int, no caso das

coordenadas baseadas nas dimensões da imagem da câmera em pixels.

s t r i n g ta r ge t_c l ass

f l o a t 3 2 x

f l o a t 3 2 y

f l o a t 3 2 x_pred ic ted

f l o a t 3 2 y_pred ic ted

3.5.3 Topic

O tópico é onde as mensagens com a formatação específica são publicados. No projeto

da tese, é interessante que o tópico contenha as coordenadas do objeto alvo.

3.5.4 Subscriber

O node que se torna subscriber lê informações publicadas no tópico. Uma possível

abordagem é fazer com que o algoritmo responsável pela dinâmica do robô seja inscrito no

tópico em que as coordenadas são publicadas para realizar o controle dos movimentos.

65

4 RESULTADOS

4.1 Treinamento do modelo

Foi feito um primeiro processo de treinamento do modelo, inicialmente, ao longo de nove

horas, no entanto, os resultados obtidos não foram satisfatórios, como pode ser observado

na Figura 23.

Diante disso, um segundo teste foi conduzido e o modelo foi treinado durante cinco dias

de treino, resultando em um desempenho mais eficiente que pode ser verificado na Figura

24 contendo múltiplos pombos. É importante notar que devido ao treinamento realizado

especificamente com pombos cinzas o modelo não foi capaz de detectar pombos brancos.

Esse aspecto evidencia a necessidade de treinar redes personalizadas para objetos

de interesse específicos. Assim, se o objetivo é ter um modelo que siga objetos não

inclusos nos modelos pré-treinados, é possível treinar novas redes neurais com esses

objetos e ajustá-las às necessidades específicas. Nesse contexto, o treinamento de um

modelo personalizado se mostrou uma solução satisfatória para aumentar a versatilidade

do algoritmo desenvolvido.

Figura 23 – Resultado após nove horas de treino

Fonte: Autor

4.2 Detecção e Rastreamento de Objetos

A rede pré-treinada utilizada, SSD MobileNet v2 320x320, empregada durante o de-

senvolvimento, apresentava oscilações significativas nas dimensões das caixas delimi-

tadoras. Essa instabilidade é associada à velocidade do modelo que é priorizada so-

66

Figura 24 – Resultado após cinco dias de treino

Fonte: Autor

bre a precisão e acurácia. Contudo, ao testar o código com um modelo mais robusto,

faster_rcnn_resnet50_v1_640x640_coco17_tpu-8, observou-se uma melhoria considerável

na consistência das caixas delimitadoras, que passaram a ter uma maior estabilidade e

delimitações mais precisas.

Ainda assim, a integração do algoritmo SORT ao modelo proporcionou resultados satisfa-

tórios no rastreamento de objetos. Especificamente, o modo 2 do algoritmo demonstrou ser

apropriado para uso em cenários com apenas um objeto da classe, minimizando confusões

temporárias com elementos do ambiente, geralmente associados a probabilidades de cor-

respondência baixas, garantindo que o objeto real permaneça como foco do rastreamento.

Os modos 0 e 1 também forneceram bons resultados e se mostraram adequados para

quando há mais de um elemento da classe de interesse em cena, sendo a priorização do

último elemento a aparecer mais adequada devido à natureza do SORT de frequentemente

trocar IDs. Além disso, nesse cenário, eles são mais adequados do que o modo 2, visto que

as probabilidades associadas tendem a variar consideravelmente ao longo das inferências

devido a variações no ângulo de observação e iluminação.

O filtro de Kalman aplicado para a predição de trajetória demonstrou sucesso na tarefa

de acompanhar o alvo durante os testes realizados na webcam. No entanto, é importante

salientar que ainda não foi avaliado o desempenho das predições e o comportamento do

movimento diante de deslocamentos relativos da câmera, que ocorrerão quando ela estiver

acoplada ao dispositivo robótico. Essa condição pode levar à percepção de uma velocidade

do objeto que não condiz com a realidade, sendo um aspecto crucial a ser investigado para

uma compreensão completa do desempenho do filtro em cenários dinâmicos.

É possível elaborar algumas propostas de solução de antemão, como, por exemplo,

alternar para as coordenadas previstas pelo filtro Kalman apenas em momentos específicos,

67

como apenas durante o deslocamento para frente do robô, ou seja, quando ele estiver em

linha reta com o alvo alinhado à câmera.

Figura 25 – Imagem da inferência com múltiplos objetos

A seta vermelha aponta para a coordenada gerada pelo filtro Kalman. Note que o alvo
selecionado é, conforme configurado, o com o maior ID, que corresponde ao último a entrar
na cena.
Fonte: Autor

4.3 ROS

A utilização do ROS no ambiente Windows apresenta algumas limitações uma vez que o

ROS é predominantemente desenvolvido para ambientes baseados em Linux. Isso implica

que ajustes para garantir compatibilidade são esperados e, apesar de a máquina Windows

ter conseguido iniciar o ambiente ROS, construir as dependências do projeto e executar com

sucesso os algoritmos de publicação e inscrição, enfrentou falhas ao executar o código de

visão como node pois foi incapaz de localizar o módulo do TensorFlow. Esse problema pode

estar associado à execução do ROS no Windows ou a um erro na seleção do interpretador,

aspectos que demandam investigação adicional para resolução.

4.4 Uso da Raspberry

Para abordar a hipótese de que os problemas estavam relacionados ao ambiente

Windows foi realizada a configuração da Raspberry Pi com o sistema operacional Raspberry

68

Figura 26 – Módulo TensorFlow não disponível ao executar o ROS na máquina local Win-
dows 11

Fonte: Autor

Pi OS baseado em Linux. Foi instalada a versão do Conda para Raspberry, visto que o

Raspberry Pi OS possui uma versão nativa do Python (3.11) e sua modificação junto a

outras bibliotecas e funcionalidades do sistema não é viável.

Após a criação do ambiente virtual a próxima etapa envolveu testar o algoritmo fora

do ambiente ROS para identificar e corrigir possíveis problemas de versões. Houve a

necessidade de adaptar o código, uma vez que a câmera oficial não é uma câmera USB,

impossibilitando o uso do comando OpenCV utilizado na máquina Windows.

A solução adotada envolveu a utilização da biblioteca picamera2, que, por sua vez, faz

uso da libcamera. No entanto, devido a um bug já constatado pela comunidade desen-

volvedora (KASPERROR, 2022), a libcamera não pode ser utilizada a não ser no Python

nativo.

Diante dessa limitação, a opção foi reescrever o código fora do ambiente virtual e baixar

as dependências de forma nativa, ou seja, diretamente no sistema. Entretanto, na instalação,

o procedimento se deparou com um bug da distribuição de TensorFlow para aquela versão

específica de Python (3.11), onde, ao requisitar ao servidor, era fornecida a versão errada e

69

não foi possível instalar a versão correta para o sistema.

Figura 27 – Erro da requisição do servidor

Os círculos vermelhos apontam para a versão que foi requisitada ao servidor e a versão
recebida após a requisição.
Fonte: Autor

71

5 CONCLUSÃO

Neste trabalho foi desenvolvido um algoritmo de visão que apresenta as funcionalidades

necessárias para navegação, incluindo a capacidade de selecionar um alvo de uma classe

específica seguindo critérios configuráveis. Além disso, realizamos testes bem-sucedidos

para explorar a viabilidade de implementar redes neurais personalizadas para adição de

novos objetos, destacando a flexibilidade e adaptabilidade do código.

A versatilidade do algoritmo é evidenciada pela possibilidade de configurar a classe alvo,

o modo de seleção em casos de múltiplos objetos da mesma categoria, a capacidade de

seleção de diferentes modelo de inferência e a inclusão de novos objetos, aspectos cruciais

para a aplicabilidade prática do algoritmo em diferentes contextos e cenários.

No entanto, é importante salientar que, durante a implementação, foram encontradas difi-

culdades que requerem solução para garantir o bom funcionamento do sistema no ambiente

para o qual foi projetado. Apesar da lógica e desenvolvimento bem sucedido da programa-

ção, são necessárias correções no que diz respeito às plataformas de implementação do

dispositivo.

Atualmente, é possível utilizar o algoritmo fora do ambiente ROS, integrando a funciona-

lidade de controle de movimento e outros algoritmos em um único arquivo. Embora essa

prática permita uma execução mais simplificada, ela dificulta a integração de novas funções

e a edição das existentes.

Portanto, próximos passos incluem a resolução dos conflitos de dependência, teste de

viabilidade de diferentes modelos de câmera para contornar o problema de incompatibilidade

de bibliotecas e integração do código na plataforma ROS.

73

REFERÊNCIAS

ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
2015. Software available from tensorflow.org. Disponível em: https://www.tensorflow.org/.

ANACONDA Software Distribution. Anaconda Inc., 2020. Disponível em: https:
//docs.anaconda.com/.

ANSARI, S. Building Computer Vision Applications Using Artificial Neural Networks: With
step-by-step examples in opencv and tensorflow with python. [S.l.]: Apress, 2020.

ANWAR, A. Create and build your first ros package. 2021. Disponível em: https://medium.
com/swlh/7-simple-steps-to-create-and-build-our-first-ros-package-7e3080d36faa. Acesso
em: 28 nov. 2023.

BEWLEY, A. et al. Simple online and realtime tracking. In: 2016 IEEE International
Conference on Image Processing (ICIP). IEEE, 2016. Disponível em: http://dx.doi.org/10.
1109/ICIP.2016.7533003.

CONVOLUTIONAL Neural Networks for Visual Recognition. Disponível em:
https://cs231n.github.io/convolutional-networks/. Acesso em: 04 dez. 2023.

GONZALEZ, R. C. Digital Image Processing: Third edition. [S.l.]: Pearson Prentice Hall,
2008.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press, 2016.
http://www.deeplearningbook.org.

KASPERROR. [BUG] Cannot be used with non-system python. [S.l.]: GitHub, 2022.
https://github.com/raspberrypi/picamera2/issues/446. Acesso em: 09 dez. 2023.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. In: PEREIRA, F. et al. (Ed.). Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2012. v. 25. Disponível em: https://proceedings.
neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

LIN, T. et al. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.
Disponível em: http://arxiv.org/abs/1405.0312.

RASPBERRY PI FOUNDATION. Raspberry Pi 4 Model B. [S.l.]. Disponí-
vel em: https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.
pdf?_gl=1*7gnzm1*_ga*MTQ1NzU1NjU4OS4xNzAyMDkzOTEy*_ga_
22FD70LWDS*MTcwMjA5MzkxMy4xLjEuMTcwMjA5NDAwMC4wLjAuMA.. Acesso
em: 09 dez. 2023.

ROSEBROCK, A. Intersection over Union (IoU) for object detection. https://pyimagesearch.
com/2016/11/07/intersection-over-union-iou-for-object-detection/. Acesso em: 22 nov. 2023.

TENSORFLOW: What’s coming in TensorFlow 2.0. https://blog.tensorflow.org/2019/01/
whats-coming-in-tensorflow-2-0.html. Acesso em: 02 dez. 2023.

TRAN, D. xmltocsv. [S.l.]: GitHub, 2017. https://github.com/datitran/raccoon_dataset/blob/
master/xml_to_csv.py.

https://www.tensorflow.org/
https://docs.anaconda.com/
https://docs.anaconda.com/
https://medium.com/swlh/7-simple-steps-to-create-and-build-our-first-ros-package-7e3080d36faa
https://medium.com/swlh/7-simple-steps-to-create-and-build-our-first-ros-package-7e3080d36faa
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
https://cs231n.github.io/convolutional-networks/
http://www.deeplearningbook.org
https://github.com/raspberrypi/picamera2/issues/446
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/1405.0312
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf?_gl=1*7gnzm1*_ga*MTQ1NzU1NjU4OS4xNzAyMDkzOTEy*_ga_22FD70LWDS*MTcwMjA5MzkxMy4xLjEuMTcwMjA5NDAwMC4wLjAuMA..
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf?_gl=1*7gnzm1*_ga*MTQ1NzU1NjU4OS4xNzAyMDkzOTEy*_ga_22FD70LWDS*MTcwMjA5MzkxMy4xLjEuMTcwMjA5NDAwMC4wLjAuMA..
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf?_gl=1*7gnzm1*_ga*MTQ1NzU1NjU4OS4xNzAyMDkzOTEy*_ga_22FD70LWDS*MTcwMjA5MzkxMy4xLjEuMTcwMjA5NDAwMC4wLjAuMA..
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://blog.tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html
https://blog.tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html
https://github.com/datitran/raccoon_dataset/blob/master/xml_to_csv.py
https://github.com/datitran/raccoon_dataset/blob/master/xml_to_csv.py

74

TRAN, D. generatetfrecord. [S.l.]: GitHub, 2018. https://github.com/datitran/raccoon_dataset/
blob/master/generate_tfrecord.py.

VALMADRE, J. et al. Local Metrics for Multi-Object Tracking. 2021.

VOULODIMOS, A. Deep learning for computer vision: A brief review. 2018. Disponível em:
https://www.hindawi.com/journals/cin/2018/7068349/.

WOJKE, N.; BEWLEY, A.; PAULUS, D. Simple Online and Realtime Tracking with a Deep
Association Metric. 2017.

WU, J. et al. Robust variational optical flow algorithm based on rolling guided filtering. In:
2018 11th International Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI). [S.l.: s.n.], 2018. p. 1–6.

YAMASHINA, K. et al. Proposal of ros-compliant fpga component for low-power robotic
systems. 08 2015.

ZHAO, M.; WANG, L.; HAN, J. An adaptive tracking window based on mean-shift target
tracking algorithm. In: 2013 Chinese Automation Congress. [S.l.: s.n.], 2013. p. 348–352.

https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecord.py
https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecord.py
https://www.hindawi.com/journals/cin/2018/7068349/

75

APÊNDICE A - CÓDIGO DE INFERÊNCIA

Para utilizar o código, é necessário configurar de acordo com os caminhos das pastas e

arquivos dentro da função if __name__ == ’__main__’. Os códigos podem ser encontrados

no repositório do autor. Para utilizar as funções importadas no algoritmo, baixe o repositório

oficial do TensorFlow.

import numpy as np

import t enso r f l ow as t f

import cv2

import sys

import random

import t ime

sys . path . append (’ \ \ p ro je to_pe ixev4 \ \ s o r t ’)

from ob jec t_de tec t i on . u t i l s import ops as u t i l s _ o p s

from ob jec t_de tec t i on . u t i l s import l abe l_map_u t i l

from ob jec t_de tec t i on . u t i l s import v i s u a l i z a t i o n _ u t i l s as v i s _ u t i l

from s o r t import *

patch t f 1 i n t o ‘ u t i l s . ops ‘

u t i l s _ o p s . t f = t f . compat . v1

Patch the l o c a t i o n o f g f i l e

t f . g f i l e = t f . i o . g f i l e

def load_model (model_path) :

model = t f . saved_model . load (model_path)

return model

def i n fe rence_for_ f rame (model , image) :

image = np . asarray (image)

The inpu t needs to be a tensor ,

conver t i t using ‘ t f . conver t_ to_tensor ‘ .

i npu t_ tenso r = t f . conver t_ to_ tensor (image)

The model expects a batch o f images ,

so add an ax is w i th ‘ t f . newaxis ‘ .

i npu t_ tenso r = inpu t_ tenso r [t f . newaxis , . . .]

Run in fe rence

o u t p u t _ d i c t = model (i npu t_ tenso r)

A l l outputs are batches tensors .

https://drive.google.com/drive/folders/1s0HMO_EuPm9YWZqogM0ZdVtlX9u1VUHK?usp=sharing
https://github.com/tensorflow/models/tree/master
https://github.com/tensorflow/models/tree/master

76

Convert to numpy arrays , and take index [0] to

remove the batch dimension .

We ’ re on ly i n t e r e s t e d i n the f i r s t num_detections .

num_detections = i n t (o u t p u t _ d i c t . pop (’ num_detections ’))

o u t p u t _ d i c t = { key : value [0 , : num_detections] . numpy ()

for key , value in o u t p u t _ d i c t . i tems () }

o u t p u t _ d i c t [’ num_detections ’] = num_detections

detec t ion_c lasses should be i n t s .

o u t p u t _ d i c t [’ de tec t ion_c lasses ’] =

o u t p u t _ d i c t [’ de tec t ion_c lasses ’] . astype (np . i n t 64)

Handle models w i th masks :

i f ’ detect ion_masks ’ in o u t p u t _ d i c t :

Reframe the the bbox mask to the image s ize .

detect ion_masks_reframed =

u t i l s _ o p s . reframe_box_masks_to_image_masks (

o u t p u t _ d i c t [’ detect ion_masks ’] ,

o u t p u t _ d i c t [’ detect ion_boxes ’] ,

image . shape [0] , image . shape [1])

detect ion_masks_reframed =

t f . cast (detect ion_masks_reframed > 0.5 , t f . u i n t 8)

o u t p u t _ d i c t [’ detect ion_masks_reframed ’] =

detect ion_masks_reframed . numpy ()

return o u t p u t _ d i c t

def t a r g e t _ t r a c k i n g (t r a c k e d _ o b j e c t s _ l i s t , t a rge t , mode=0) :

’ ’ ’ t r a c k e d _ o b j e c t _ l i s t : a r ray de shape (n , 7) ,

contendo as informacoes no formato

(x1 , y1 , x2 , y2 , score , labe l , i d)

t a r g e t : s t r i n g com o l a b e l do ob je to a lvo

mode : 0 −> segue o pr ime i ro ob je to da classe alvo que aparecer

mode : 1 −> segue o u l t imo ob je to da classe alvo que aparecer

mode : 2 −> segue o ob je to da classe alvo com o maior score

em cena ’ ’ ’

t a rge t_ l abe led = np . empty ((0 , 6))

Checagem de se a l i s t a dos ob je tos da cena com ca tegor ia

a lvo tem pelo menos um ob je to

77

i f t r a c k e d _ o b j e c t s _ l i s t . shape [0] != 0 :

Loop armazena os ob je tos da cena com a ca tegor ia a lvo

for x , (x1 , y1 , x2 , y2 , score , labe l , id)

in enumerate (t r a c k e d _ o b j e c t s _ l i s t) :

i f l a b e l == t a r g e t :

t a rge t_ l abe led = np . append (ta rge t_ labe led ,

[[id , x1 , y1 , x2 , y2 , score]] , ax is =0)

Checagem de se e x i s t e ao menos um ob je to na l i s t a de

ob je tos da ca tegor ia a lvo

i f t a rge t_ l abe led . shape [0] != 0 :

Loop gera o output de acordo com o modo (mode)

i f mode == 0:

t a r g e t _ i d = min (t a rge t_ l abe led [: , 0])

for x , (id , x1 , y1 , x2 , y2 , score)

in enumerate (t a rge t_ l abe led) :

i f id == t a r g e t _ i d :

return (id , x1 , y1 , x2 , y2 , score)

e l i f mode == 1:

t a r g e t _ i d = max(t a rge t_ l abe led [: , 0])

for x , (id , x1 , y1 , x2 , y2 , score)

in enumerate (t a rge t_ l abe led) :

i f id == t a r g e t _ i d :

return (id , x1 , y1 , x2 , y2 , score)

return 0

e l i f mode == 2:

max_labeled_score = max(t a rge t_ l abe led [: , 5])

for x , (id , x1 , y1 , x2 , y2 , score)

in enumerate (t a rge t_ l abe led) :

t a r g e t _ i d = id i f f l o a t (score) ==

f l o a t (max_labeled_score) else None

return (id , x1 , y1 , x2 , y2 , score)

else :

return None

def run_ in fe rence (model , category_index , cap) :

L im ia r para que o ob je to se ja c l a s s i f i c a d o como v a l i d o

t h resho ld = 0.5

L i s t a que contera as coordenadas dos ob je tos detectados

78

e suas pontuacoes

no formato [[x1 , y1 , x2 , y2 , score] , [x1 , y1 , x2 , y2 , score] , . . .]

de tec t i ons = np . empty ((0 , 5))

L i s t a contendo as coordenadas , os scores e as ca tegor ias

de tec t i ons_p lus_ labe l s = np . empty ((0 , 6))

L i s t a que contera as coordenadas , o score ,

a ca tegor ia e o ID

t racked_ob jec ts = np . empty ((0 , 7))

I ns t a n c i a de SORT

mot_t racker = Sor t ()

Cores para as bounding boxes

co lo rs = [(random . r a n d i n t (0 , 255) , random . r a n d i n t (0 , 255) ,

random . r a n d i n t (0 , 255)) for j in range (1 0)]

Armazenamento do h i s t o r i c o coordenadas de cent ro

t a r g e t _ r e g i s t e r = np . empty ((0 , 4))

Var iave l que con t ro l a o i n i c i o do F i l t r o Kalman

Kalman_start = False

I n t e r v a l o de tempo ent re os r e g i s t r o s e as prev isoes

Kalman_time = 0.5

Var iave l que conta os frames dentro desse i n t e r v a l o de tempo

Kalman_frame_count = 0

Var iave l para c a l c u l a r o FPS

FPS_frame_count = 0

Quantidade de frames a serem con tab i l i zados no ca l cu lo

FPS_frame_amount = 5

FPS = 0

while True :

r e t re to rna f a l s o caso nao haja nada no frame

re t , frame = cap . read ()

Calculo do FPS

i f FPS_frame_count == 0:

FPS_start = t ime . t ime ()

FPS_frame_count = 0

79

FPS_frame_count += 1

e l i f FPS_frame_count < FPS_frame_amount :

FPS_frame_count += 1

else :

FPS_end = t ime . t ime ()

FPS = FPS_frame_amount / / (FPS_end − FPS_start)

FPS_frame_count = 0

pr in t (’FPS: ’ , FPS)

Quantidade de frames correspondente ao

i n t e r v a l o de tempo

ent re as prev isoes do F i l t r o Kalman

Kalman_frame_amount = i n t (FPS* Kalman_time)

Actua l de tec t i on

o u t p u t _ d i c t = in fe rence_fo r_ f rame (model , frame)

for x , (y_min , x_min , y_max , x_max)

in enumerate (o u t p u t _ d i c t [’ detect ion_boxes ’]) :

i f o u t p u t _ d i c t [’ de tec t ion_scores ’] [x] > th resho ld :

x1 = i n t (x_min * frame . shape [1])

y1 = i n t (y_min * frame . shape [0])

x2 = i n t (x_max* frame . shape [1])

y2 = i n t (y_max* frame . shape [0])

O array abaixo armazena os ob je tos em cena

de tec t i ons = np . append (de tec t ions ,

[x1 , y1 , x2 , y2 ,

o u t p u t _ d i c t [’ de tec t ion_scores ’] [x]]]

, ax is =0)

O array abaixo armazena os ob je tos em cena

e suas ca tegor ias para comparar

poster io rmente com os IDs

de tec t i ons_p lus_ labe l s =

np . append (de tec t i ons_p lus_ labe ls ,

[[x1 , y1 , x2 , y2 ,

o u t p u t _ d i c t [’ de tec t ion_scores ’] [x] ,

category_index [o u t p u t _ d i c t

[’ de tec t ion_c lasses ’] [x]]

[’name ’]]] , ax is =0)

80

Envia a l i s t a ao a lgo r i tmo de t r a c k i n g

t rack_bbs_ ids = mot_t racker . update (de tec t i ons)

Di ferenca maxima ent re a d i s t a n c i a ent re as coordenadas

das bounding boxes , v i s t o que o output do SORT

d i f e r e em algumas unidades

del ta_bbox = 10

Compara as coordenadas da l i s t a de deteccoes com as

coordenadas na l i s t a dos IDs para faze r as associacoes

for t rack , (tx1 , ty1 , tx2 , ty2 , id)

in enumerate (t rack_bbs_ ids) :

for detec t ion , (dx1 , dy1 , dx2 , dy2 , score , l a b e l)

in enumerate (de tec t i ons_p lus_ labe l s) :

i f abs (i n t (tx1) − i n t (dx1)) <=

del ta_bbox and abs (i n t (ty1) − i n t (dy1))

<= del ta_bbox and abs (i n t (tx2) − i n t (dx2))

<= del ta_bbox and abs (i n t (ty2) − i n t (dy2))

<= del ta_bbox :

t racked_ob jec ts =

np . append (t racked_ob jec ts ,

[[tx1 , ty1 , tx2 , ty2 , score ,

labe l , i n t (id)]] , ax is =0)

Envia a l i s t a de ob je tos sob o a lgo r i tmo de t r a c k i n g

para o a lgo r i tmo que se lec iona um alvo

t a r g e t = t a r g e t _ t r a c k i n g (t racked_ob jec ts , ’ person ’ , 2)

Armazenamento

i f t a r g e t is not None :

x1 = f l o a t (t a r g e t [1])

y1 = f l o a t (t a r g e t [2])

x2 = f l o a t (t a r g e t [3])

y2 = f l o a t (t a r g e t [4])

i f t a r g e t _ r e g i s t e r . shape [0] < 1 :

t a r g e t _ r e g i s t e r = np . append (t a r g e t _ r e g i s t e r ,

[[x1 , y1 , x2 , y2]] , ax is =0)

else :

t a r g e t _ r e g i s t e r [0 , 0] =

81

(t a r g e t _ r e g i s t e r [0 , 1] + x1) / 2

t a r g e t _ r e g i s t e r [0 , 1] =

(t a r g e t _ r e g i s t e r [0 , 1] + y1) / 2

t a r g e t _ r e g i s t e r [0 , 2] =

(t a r g e t _ r e g i s t e r [0 , 2] + x2) / 2

t a r g e t _ r e g i s t e r [0 , 3] =

(t a r g e t _ r e g i s t e r [0 , 3] + y2) / 2

i f Kalman_frame_count >= Kalman_frame_amount :

i f Kalman_start is False :

Kalman_start = True

Kalman_Fi l te r = KalmanBoxTracker (

[t a r g e t _ r e g i s t e r [0 , 0] ,

t a r g e t _ r e g i s t e r [0 , 1] ,

t a r g e t _ r e g i s t e r [0 , 2] ,

t a r g e t _ r e g i s t e r [0 , 3]])

t a r g e t _ r e g i s t e r = np . empty ((0 , 4))

Kalman_frame_count = 0

else :

Ka lman_Fi l te r . update ([t a r g e t _ r e g i s t e r [0 , 0] ,

t a r g e t _ r e g i s t e r [0 , 1] ,

t a r g e t _ r e g i s t e r [0 , 2] ,

t a r g e t _ r e g i s t e r [0 , 3]])

pr in t (Ka lman_Fi l te r . p r e d i c t ())

t a r g e t _ r e g i s t e r = np . empty ((0 , 4))

Kalman_frame_count = 0

else :

Kalman_frame_count += 1

p r i n t (t a r g e t _ c e n t e r _ r e g i s t e r)

Coordenadas geradas pelo F i l t r o de Kalman

xk1 , yk1 , xk2 , yk2 = 0 , 0 , 0 , 0

i f Kalman_start is True and not

np . isnan (Kalman_Fi l te r . p r e d i c t () [0 , 0]) :

xk1 = i n t (Ka lman_Fi l te r . p r e d i c t () [0 , 0])

yk1 = i n t (Ka lman_Fi l te r . p r e d i c t () [0 , 1])

xk2 = i n t (Ka lman_Fi l te r . p r e d i c t () [0 , 2])

yk2 = i n t (Ka lman_Fi l te r . p r e d i c t () [0 , 3])

82

Centro da prev isao de Kalman

xkcenter = (xk1 + xk2) / / 2

ykcenter = (yk1 + yk2) / / 2

Visua l i zacao

Texto sobre os ob je tos

Fonte

f on te = cv2 .FONT_HERSHEY_SIMPLEX

Tamanho

fon tSca le = 1

Line th ickness o f 2 px

th i ckness = 2

for object , (x1 , y1 , x2 , y2 , score , labe l , id)

in enumerate (t racked_ob jec ts) :

x1 = 0 i f t racked_ob jec ts . shape [0] == 0

else i n t (f l o a t (t racked_ob jec ts [object , 0]))

y1 = 0 i f t racked_ob jec ts . shape [0] == 0

else i n t (f l o a t (t racked_ob jec ts [object , 1]))

x2 = 0 i f t racked_ob jec ts . shape [0] == 0

else i n t (f l o a t (t racked_ob jec ts [object , 2]))

y2 = 0 i f t racked_ob jec ts . shape [0] == 0

else i n t (f l o a t (t racked_ob jec ts [object , 3]))

Centro do ob je to

xcenter = (x1 + x2) / / 2

ycenter = (y1 + y2) / / 2

#cv2 . c i r c l e (frame , (xc1 , yc1) , 20 , (0 ,0 ,255) , 10 , −1)

#cv2 . c i r c l e (frame , (xc2 , yc2) , 20 , (0 ,0 ,255) , 10 , −1)

cv2 . c i r c l e (frame , (xkcenter , ykcenter) , 10 ,

(255 ,255 ,255) , 10 , −1)

cv2 . rec tang le (frame , (x1 , y1) , (x2 , y2) ,

(co lo rs [i n t (f l o a t (id)) % len (co lo rs)]) , 3)

cv2 . putText (frame , (t racked_ob jec ts [object , 5] +

’ ID : ’ + t racked_ob jec ts [object , 6]) , (x1 , y1) ,

fonte , fontScale , (co lo rs [i n t (f l o a t (id))

% len (co lo rs)]) , th ickness , cv2 . LINE_AA)

83

cv2 . putText (frame , (’FPS: ’ + st r (FPS)) , (0 , 50) , fonte ,

fontScale , (0 ,0 ,0) , th ickness , cv2 . LINE_AA)

cv2 . imshow (’ ob jec t_de tec t i on ’ ,

cv2 . res i ze (frame , (800 , 600)))

i f cv2 . waitKey (25) & 0xFF == ord (’ q ’) :

cap . re lease ()

cv2 . destroyAl lWindows ()

break

p r i n t (frame . shape) −> (480 , 640 , 3)

’ ’ ’ v i s _ u t i l . v isual ize_boxes_and_labels_on_image_array (

frame ,

o u t p u t _ d i c t [’ detect ion_boxes ’] ,

o u t p u t _ d i c t [’ de tec t ion_c lasses ’] ,

o u t p u t _ d i c t [’ de tec t ion_scores ’] ,

category_index ,

instance_masks= o u t p u t _ d i c t . get (

’ detect ion_masks_reframed ’ , None) ,

use_normal ized_coordinates=True ,

l i n e _ t h i c k n e s s =8) ’ ’ ’

Esvazia as l i s t a s para o proximo frame

de tec t i ons = np . empty ((0 , 5))

de tec t i ons_p lus_ labe l s = np . empty ((0 , 6))

t racked_ob jec ts = np . empty ((0 , 7))

i f __name__ == ’ __main__ ’ :

Caminho ate o modelo

detect ion_model = load_model (

’ ssd_mobilenet_v2_320x320_coco17_tpu − 8 \ \ saved_model ’)

Caminho ate o l a b e l map

category_index =

labe l_map_u t i l . create_category_index_from_labelmap (’ models \ \

research \ \ ob jec t_de tec t i on \ \ data \ \ mscoco_label_map . pb t x t ’ ,

use_display_name=True)

cap = cv2 . VideoCapture (1)

run_ in fe rence (detect ion_model , category_index , cap)

85

APÊNDICE B - DOWNLOAD DE MODELOS

Para fazer download de um dos modelos do TensorFlow, acesse o repositório oficial,

selecione um dos modelos, insira-o no código abaixo e execute.

import wget

model_ l ink = " (h t t p : / / download . tenso r f l ow . org / models

/ ob jec t_de tec t i on / t f 2 /20200711/ l i n k . t a r . gz) "

wget . download (model_ l ink)

import t a r f i l e

t a r = t a r f i l e . open (’ a rqu ivo . t a r . gz ’)

t a r . e x t r a c t a l l (’ . ’)

t a r . c lose ()

Após isso, será baixado o modelo no diretório que contém o código acima, e será

necessário fazer a referência da pasta saved_model no algoritmo de visão contido no

Apêndice A.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

87

APÊNDICE C - TREINAMENTO DE MODELO

Neste apêndice estão descritas as etapas referentes ao treinamento de um modelo

para detectar objetos customizados, o que será útil no caso de categorias específicas não

encontradas nos datasets disponíveis publicamente. Para utilizar as funções de treinamento,

baixe orepositório oficial do TensorFlow.

Coletar imagens que contenham os objetos de interesse e separá-las em uma pasta train,

para o treino do modelo, e test, para o teste. Coletar acima de 200 imagens e inserir 70%

delas na pasta para treino e 30% delas na para teste.

Executar no terminal labelimg.exe e abrir as imagens para categorizar os objetos presentes

nela através do Create RectBox, como na Figura 16.

Converter Anotações para CSV: Utilize o script abaixo para converter os arquivos de

anotação XML para o formato CSV. Este script espera uma pasta "images"com subpastas

"train"e "test". Baseado no código (TRAN, 2017)

import os

import glob

import pandas as pd

import xml . e t ree . ElementTree as ET

def xml_to_csv (path) :

x m l _ l i s t = []

for x m l _ f i l e in glob . glob (path + ’ / * . xml ’) :

t r ee = ET . parse (x m l _ f i l e)

roo t = t ree . ge t roo t ()

for member in r oo t . f i n d a l l (’ ob jec t ’) :

value = (roo t . f i n d (’ f i lename ’) . t ex t ,

i n t (r oo t . f i n d (’ s i ze ’) [0] . t e x t) ,

i n t (r oo t . f i n d (’ s i ze ’) [1] . t e x t) ,

member [0] . t ex t ,

i n t (member [4] [0] . t e x t) ,

i n t (member [4] [1] . t e x t) ,

i n t (member [4] [2] . t e x t) ,

i n t (member [4] [3] . t e x t)

)

x m l _ l i s t . append (value)

column_name = [’ f i lename ’ , ’ w id th ’ , ’ he igh t ’ , ’ c lass ’ ,

’ xmin ’ , ’ ymin ’ , ’ xmax ’ , ’ ymax ’]

xml_df = pd . DataFrame (x m l _ l i s t , columns=column_name)

return xml_df

https://github.com/tensorflow/models/tree/master

88

def main () :

for f o l d e r in [’ t r a i n ’ , ’ t e s t ’] :

image_path = os . path . j o i n (os . getcwd () ,

(’ images / ’ + f o l d e r))

xml_df = xml_to_csv (image_path)

xml_df . to_csv ((’ images / ’+ f o l d e r + ’ _ labe ls . csv ’) ,

index=None)

pr in t (’ Success fu l l y converted xml to csv . ’)

main ()

Gerar Arquivos TFRecord: Outro script gera arquivos TFRecord, um formato que o

TensorFlow usa para treinamento. Modifique de acordo com os labels nomeados na etapa

de categorização e execute este script tanto para os dados de treinamento quanto para os

de teste. Baseado no código (TRAN, 2018)

from __future__ import d i v i s i o n

from __future__ import p r i n t _ f u n c t i o n

from __future__ import abso lu te_ impor t

import os

import i o

import pandas as pd

from t enso r f l ow . python . framework . vers ions import VERSION

i f VERSION >= " 2 .0 .0 a0 " :

import t enso r f l ow . compat . v1 as t f

else :

import t enso r f l ow as t f

from PIL import Image

from ob jec t_de tec t i on . u t i l s import d a t a s e t _ u t i l

from c o l l e c t i o n s import namedtuple , OrderedDict

f l a g s = t f . app . f l a g s

f l a g s . DEFINE_string (’ csv_ input ’ , ’ ’ , ’ Path to the CSV inpu t ’)

f l a g s . DEFINE_string (’ output_path ’ , ’ ’ , ’ Path to output TFRecord ’)

f l a g s . DEFINE_string (’ image_dir ’ , ’ ’ , ’ Path to images ’)

FLAGS = f l a g s .FLAGS

89

’ ’ ’

* *
Make sure to e d i t t h i s method to match

the l a b e l s you made wi th labe l Img !

* *
’ ’ ’

def c l a s s _ t e x t _ t o _ i n t (row_label) :

i f row_label == ’ example_label_1 ’ :

return 1

e l i f row_label == ’ example_label_2 ’ :

return 2

e l i f row_label == ’ example_label_3 ’ :

return 3

else :

return None

def s p l i t (df , group) :

data = namedtuple (’ data ’ , [’ f i lename ’ , ’ ob jec t ’])

gb = df . groupby (group)

return [data (f i lename , gb . get_group (x)) for

f i lename , x in zip (gb . groups . keys () , gb . groups)]

def create_t f_example (group , path) :

w i th t f . g f i l e . GFi le (os . path . j o i n (path ,

’ { } ’ . format (group . f i lename)) , ’ rb ’) as f i d :

encoded_jpg = f i d . read ()

encoded_jpg_io = i o . BytesIO (encoded_jpg)

image = Image . open (encoded_jpg_io)

width , he igh t = image . s ize

f i lename = group . f i lename . encode (’ u t f 8 ’)

image_format = b ’ jpg ’

xmins = []

xmaxs = []

ymins = []

ymaxs = []

c lasses_ tex t = []

c lasses = []

for index , row in group . object . i t e r r o w s () :

90

xmins . append (row [’ xmin ’] / w id th)

xmaxs . append (row [’ xmax ’] / w id th)

ymins . append (row [’ ymin ’] / he igh t)

ymaxs . append (row [’ ymax ’] / he igh t)

c lasses_ tex t . append (row [’ c lass ’] . encode (’ u t f 8 ’))

c lasses . append (c l a s s _ t e x t _ t o _ i n t (row [’ c lass ’]))

t f_example = t f . t r a i n . Example (

fea tu res = t f . t r a i n . Features (f ea tu re ={

’ image / he igh t ’ :

d a t a s e t _ u t i l . i n t 6 4 _ f e a t u r e (he igh t) ,

’ image / width ’ :

d a t a s e t _ u t i l . i n t 6 4 _ f e a t u r e (width) ,

’ image / f i lename ’ :

d a t a s e t _ u t i l . by tes_ fea tu re (f i lename) ,

’ image / source_id ’ :

d a t a s e t _ u t i l . by tes_ fea tu re (f i lename) ,

’ image / encoded ’ :

d a t a s e t _ u t i l . by tes_ fea tu re (encoded_jpg) ,

’ image / format ’ :

d a t a s e t _ u t i l . by tes_ fea tu re (image_format) ,

’ image / ob jec t / bbox / xmin ’ :

d a t a s e t _ u t i l . f l o a t _ l i s t _ f e a t u r e (xmins) ,

’ image / ob jec t / bbox / xmax ’ :

d a t a s e t _ u t i l . f l o a t _ l i s t _ f e a t u r e (xmaxs) ,

’ image / ob jec t / bbox / ymin ’ :

d a t a s e t _ u t i l . f l o a t _ l i s t _ f e a t u r e (ymins) ,

’ image / ob jec t / bbox / ymax ’ :

d a t a s e t _ u t i l . f l o a t _ l i s t _ f e a t u r e (ymaxs) ,

’ image / ob jec t / c lass / t e x t ’ :

d a t a s e t _ u t i l . b y t e s _ l i s t _ f e a t u r e (c lasses_ tex t) ,

’ image / ob jec t / c lass / l a b e l ’ :

d a t a s e t _ u t i l . i n t 6 4 _ l i s t _ f e a t u r e (c lasses) ,

}))

return t f_example

def main (_) :

w r i t e r = t f . python_io . TFRecordWriter (FLAGS. output_path)

path = os . path . j o i n (FLAGS. image_dir)

examples = pd . read_csv (FLAGS. csv_ input)

91

grouped = s p l i t (examples , ’ f i lename ’)

for group in grouped :

t f_example = create_t f_example (group , path)

w r i t e r . w r i t e (t f_example . S e r i a l i z e T o S t r i n g ())

w r i t e r . c lose ()

output_path = os . path . j o i n (os . getcwd () , FLAGS. output_path)

pr in t (’ Success fu l l y created the TFRecords :

{ } ’ . format (output_path))

i f __name__ == ’ __main__ ’ :

t f . app . run ()

commands :

python genera te_ t f reco rd . py

−−csv_ input=images / t e s t _ l a b e l s . csv

−−image_dir=images / t e s t −−output_path= t e s t . record

python genera te_ t f reco rd . py

−−csv_ input=images / t r a i n _ l a b e l s . csv

−−image_dir=images / t r a i n −−output_path= t r a i n . record

main ()

Baixar um Modelo Pré-Treinado: Após a escolha de um modelo pré-treinado do Ten-

sorFlow Model Zoo. Escolha um modelo de acordo com suas necessidades e desempenho

desejado. Baixar e descompactar conforme discorrido no Apêndice B.

Criar um Mapa de Rótulos: Crie um arquivo de mapa de rótulos (normalmente chamado

labelmap.pbtxt). Cada classe deve ter um bloco no formato item id: ..., name: Os IDs

devem coincidir com os IDs usados nos scripts anteriores.

i tem {

id : 1

name : ’ example_label_1 ’

}

i tem {

id : 2

name : ’ example_label_2 ’

}

i tem {

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

92

id : 3

name : ’ example_label_3 ’

}

Configurar o Arquivo de Configuração .config do Modelo: Copie o arquivo de configu-

ração do modelo (normalmente encontrado em models/research/object_detection/configs/tf2/)

para a pasta principal do projeto. Abra o arquivo de configuração em um editor de texto.

Altere os seguintes parâmetros:

• num_classes: Número de classes no seu conjunto de dados.

• fine_tune_checkpoint: Caminho para o arquivo de checkpoint do modelo pré-treinado

baixadp.

• batch_size: Defina um valor apropriado com base na capacidade do seu hardware.

Caso use CPU, mantenha um valor baixo, como 2.

• Configurar Caminhos para Dados: Atualize os caminhos para os dados de treina-

mento e teste no arquivo de configuração. Certifique-se de que os caminhos estejam

corretos, apontando para os arquivos TFRecord que você gerou.

No label_map_path dentro do train_input_reader, insira o .../labelmap.pbtxt criado.

No fine_tune_checkpoint, aponte para o .../checkpoint/ckpt-0 dentro do modelo

que foi baixado na etapa anterior. Também altere o fine_tune_checkpoint_type de

"classification" para "detection".

No input_path dentro do train_input_reader, insira o .../train.record criado.

No input_path dentro do eval_input_reader, insira o .../test.record criado.

Treinamento do Modelo: Para iniciar o treinamento, utilize a função do TensorFlow. Use

o script de treinamento fornecido no repositório oficial do TensorFlow no GitHub. Execute,

no terminal, o comando:

python model_main_tf2 . py −−caminho_do . con f i g

−−model_dir= t r a i n i n g −− a l s o l o g t o s t d e r r

O arquivo model_main_tf2.py se encontra no .../models/research/object_detection.

TensorBoard: É possível monitorar a progressão do modelo executando no terminal o

comando

tensorboard −− l o g d i r ’ t r a i n i n g / t r a i n ’

para abrir o TensorBoard

Exportar Modelo Treinado: Uma vez concluído o treinamento, exporte o modelo treinado

para uso posterior através do comando no terminal

93

python exporter_main_v2 . py −− t ra i ned_checkpo in t_d i r = t r a i n i n g

−− p ipe l i ne_con f i g_pa th =arqu ivo . con f i g

−− o u t p u t _ d i r e c t o r y in ference_graph

O script para exportação deve ser ajustado com os caminhos corretos.

95

APÊNDICE D - VERSÕES DE BIBLIOTECAS COMPATÍVEIS

Ao solucionar problemas de compatibilidade que ocorreram ao longo do desenvolvimento

da tese, o ambiente virtual foi capaz de executar a inferência e treinamento a partir das

versões listadas neste apêndice. Note que nem todas as bibliotecas foram utilizadas, visto

que o Conda insere automaticamente na criação de espaços virtuais.

absl-py 1.4.0; apache-beam 2.46.0; array-record 0.4.0; astunparse 1.6.3; avro-python3

1.10.2; bleach 6.0.0; cachetools 5.3.1; certifi 2023.5.7; charset-normalizer 3.1.0; click 8.1.3;

cloudpickle 2.2.1; colorama 0.4.6; contextlib2 21.6.0; contourpy 1.1.0; crcmod 1.7; cycler

0.11.0; Cython 0.29.35; dill 0.3.1.1; dm-tree 0.1.8; docopt 0.6.2; etils 1.3.0; fastavro 1.7.4;

fasteners 0.18; filterpy 1.4.5; flatbuffers 1.12; fonttools 4.40.0; gast 0.4.0; gin-config 0.5.0;

google-api-core 2.11.1; google-api-python-client 2.91.0; google-auth 2.21.0; google-auth-

httplib2 0.1.0; google-auth-oauthlib 0.4.6; google-pasta 0.2.0; googleapis-common-protos

1.59.1; grpcio 1.56.0; h5py 3.9.0; hdfs 2.7.0; httplib2 0.21.0; idna 3.4; imageio 2.31.3; immu-

tabledict 2.2.5; importlib-resources 5.12.0; joblib 1.3.1; kaggle 1.5.15; keras 2.9.0; Keras-

Preprocessing 1.1.2; kiwisolver 1.4.4; labelImg 1.8.6; labeling 0.1.13; lap 0.4.0; lazy_loader

0.3; libclang 16.0.0; lvis 0.5.3; lxml 4.9.2; Markdown 3.4.3; MarkupSafe 2.1.3; mask-rcnn-tf2

1.0; matplotlib 3.7.1; mkl-fft 1.3.6; mkl-random 1.2.2; mkl-service 2.4.0; networkx 3.1; numpy

1.24.4; oauth2client 4.1.3; oauthlib 3.2.2; object-detection 0.1; objsize 0.6.1; opencv-contrib-

python 4.8.0.74; opencv-python 4.8.0.74; opencv-python-headless 4.8.0.74; opt-einsum

3.3.0; orjson 3.9.1; packaging 23.1; pandas 2.0.3; Pillow 9.5.0; pip 23.1.2; portalocker 2.7.0;

promise 2.3; proto-plus 1.22.3; protobuf 3.19.6; psutil 5.9.5; py-cpuinfo 9.0.0; pyarrow 9.0.0;

pyasn1 0.5.0; pyasn1-modules 0.3.0; pycocotools 2.0; pydot 1.4.2; pymongo 3.13.0; pypar-

sing 2.4.7; PyQt5 5.15.9; PyQt5-Qt5 5.15.2; PyQt5-sip 12.12.2; python-dateutil 2.8.2; python-

slugify 8.0.1; pytz 2023.3; PyWavelets 1.4.1; pywin32 306; PyYAML 5.4.1; regex 2023.6.3;

requests 2.31.0; requests-oauthlib 1.3.1; rsa 4.9; sacrebleu 2.2.0; scikit-image 0.21.0; scikit-

learn 1.3.0; scipy 1.11.1; sentencepiece 0.1.99; seqeval 1.2.2; setuptools 67.8.0; six 1.16.0;

tabulate 0.9.0; tensorboard 2.9.1; tensorboard-data-server 0.6.1; tensorboard-plugin-wit

1.8.1; tensorflow 2.9.1; tensorflow-addons 0.20.0; tensorflow-datasets 4.9.0; tensorflow-

estimator 2.9.0; tensorflow-hub 0.13.0; tensorflow-io 0.31.0; tensorflow-io-gcs-filesystem

0.31.0; tensorflow-metadata 1.13.0; tensorflow-model-optimization 0.7.5; tensorflow-text

2.10.0; termcolor 2.3.0; text-unidecode 1.3; tf-models-official 2.10.1; tf-slim 1.1.0; threadpo-

olctl 3.1.0; tifffile 2023.7.18; toml 0.10.2; tqdm 4.65.0; typeguard 2.13.3; typing_extensions

4.7.1; tzdata 2023.3; uritemplate 4.1.1; urllib3 1.26.16; webencodings 0.5.1; Werkzeug 2.3.6;

wget 3.2; wheel 0.38.4; wrapt 1.15.0; zipp 3.15.0; zstandard 0.21.0

97

ANEXO A - LICENÇA DO LABELIMG

Copyright (c) <2015-Present> Tzutalin

Copyright (C) 2013 MIT, Computer Science and Artificial Intelligence Laboratory. Bryan

Russell, Antonio Torralba, William T. Freeman

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the "Software"), to deal in the Software

without restriction, including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to

whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR

IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

99

ANEXO B - LICENÇA DO NUMPY

Copyright (C) 2008-2023 Stefan van der Walt <stefan@mentat.za.net>, Pauli Virtanen

<pav@iki.fi>

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer. 2. Redistributions in binary form must reproduce

the above copyright notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

101

ANEXO C - LICENÇA DO OPENCV

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License"shall mean the terms and conditions for use, reproduction, and distribution as

defined by Sections 1 through 9 of this document.

"Licensor"shall mean the copyright owner or entity authorized by the copyright owner that

is granting the License.

"Legal Entity"shall mean the union of the acting entity and all other entities that control, are

controlled by, or are under common control with that entity. For the purposes of this

definition, "control"means (i) the power, direct or indirect, to cause the direction or

management of such entity, whether by contract or otherwise, or (ii) ownership of fifty

percent (50outstanding shares, or (iii) beneficial ownership of such entity.

"You"(or "Your") shall mean an individual or Legal Entity exercising permissions granted by

this License.

"Source"form shall mean the preferred form for making modifications, including but not

limited to software source code, documentation source, and configuration files.

"Object"form shall mean any form resulting from mechanical transformation or translation

of a Source form, including but not limited to compiled object code, generated

documentation, and conversions to other media types.

"Work"shall mean the work of authorship, whether in Source or Object form, made

available under the License, as indicated by a copyright notice that is included in or

attached to the work (an example is provided in the Appendix below).

"Derivative Works"shall mean any work, whether in Source or Object form, that is based on

(or derived from) the Work and for which the editorial revisions, annotations, elaborations,

or other modifications represent, as a whole, an original work of authorship. For the

purposes of this License, Derivative Works shall not include works that remain separable

from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works

thereof.

102

"Contribution"shall mean any work of authorship, including the original version of the Work

and any modifications or additions to that Work or Derivative Works thereof, that is

intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an

individual or Legal Entity authorized to submit on behalf of the copyright owner. For the

purposes of this definition, "submitted"means any form of electronic, verbal, or written

communication sent to the Licensor or its representatives, including but not limited to

communication on electronic mailing lists, source code control systems, and issue tracking

systems that are managed by, or on behalf of, the Licensor for the purpose of discussing

and improving the Work, but excluding communication that is conspicuously marked or

otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor"shall mean Licensor and any individual or Legal Entity on behalf of whom a

Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each

Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,

royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,

publicly display, publicly perform, sublicense, and distribute the Work and such Derivative

Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each

Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,

royalty-free, irrevocable (except as stated in this section) patent license to make, have

made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license

applies only to those patent claims licensable by such Contributor that are necessarily

infringed by their Contribution(s) alone or by combination of their Contribution(s) with the

Work to which such Contribution(s) was submitted. If You institute patent litigation against

any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a

Contribution incorporated within the Work constitutes direct or contributory patent

infringement, then any patent licenses granted to You under this License for that Work shall

terminate as of the date such litigation is filed.

103

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works

thereof in any medium, with or without modifications, and in Source or Object form,

provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this

License; and

(b) You must cause any modified files to carry prominent notices stating that You changed

the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all

copyright, patent, trademark, and attribution notices from the Source form of the Work,

excluding those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE"text file as part of its distribution, then any Derivative

Works that You distribute must include a readable copy of the attribution notices contained

within such NOTICE file, excluding those notices that do not pertain to any part of the

Derivative Works, in at least one of the following places: within a NOTICE text file

distributed as part of the Derivative Works; within the Source form or documentation, if

provided along with the Derivative Works; or, within a display generated by the Derivative

Works, if and wherever such third-party notices normally appear. The contents of the

NOTICE file are for informational purposes only and do not modify the License. You may

add Your own attribution notices within Derivative Works that You distribute, alongside or

as an addendum to the NOTICE text from the Work, provided that such additional

attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide

additional or different license terms and conditions for use, reproduction, or distribution of

Your modifications, or for any such Derivative Works as a whole, provided Your use,

reproduction, and distribution of the Work otherwise complies with the conditions stated in

this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution

intentionally submitted for inclusion in the Work by You to the Licensor shall be under the

terms and conditions of this License, without any additional terms or conditions.

Notwithstanding the above, nothing herein shall supersede or modify the terms of any

separate license agreement you may have executed with Licensor regarding such

Contributions.

6. Trademarks. This License does not grant permission to use the trade names,

trademarks, service marks, or product names of the Licensor, except as required for

reasonable and customary use in describing the origin of the Work and reproducing the

content of the NOTICE file.

104

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,

Licensor provides the Work (and each Contributor provides its Contributions) on an "AS

IS"BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied, including, without limitation, any warranties or conditions of TITLE,

NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR

PURPOSE. You are solely responsible for determining the appropriateness of using or

redistributing the Work and assume any risks associated with Your exercise of permissions

under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including

negligence), contract, or otherwise, unless required by applicable law (such as deliberate

and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for

damages, including any direct, indirect, special, incidental, or consequential damages of

any character arising as a result of this License or out of the use or inability to use the

Work (including but not limited to damages for loss of goodwill, work stoppage, computer

failure or malfunction, or any and all other commercial damages or losses), even if such

Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative

Works thereof, You may choose to offer, and charge a fee for, acceptance of support,

warranty, indemnity, or other liability obligations and/or rights consistent with this License.

However, in accepting such obligations, You may act only on Your own behalf and on Your

sole responsibility, not on behalf of any other Contributor, and only if You agree to

indemnify, defend, and hold each Contributor harmless for any liability incurred by, or

claims asserted against, such Contributor by reason of your accepting any such warranty

or additional liability.

END OF TERMS AND CONDITIONS

105

ANEXO D - LICENÇA DO ROS

Redistribution and use in source and binary forms, with or without modification, are

permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer. * Redistributions in binary form must reproduce the

above copyright notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution. * Neither the name of

copyright holder nor the names of its contributors may be used to endorse or promote

products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS"AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL

THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING

IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

107

ANEXO E - LICENÇA DO SORT

GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted

to copy and distribute verbatim copies of this license document, but changing it is not

allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of

works.

The licenses for most software and other practical works are designed to take away your

freedom to share and change the works. By contrast, the GNU General Public License is

intended to guarantee your freedom to share and change all versions of a program–to

make sure it remains free software for all its users. We, the Free Software Foundation, use

the GNU General Public License for most of our software; it applies also to any other work

released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free

software (and charge for them if you wish), that you receive source code or can get it if you

want it, that you can change the software or use pieces of it in new free programs, and that

you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking

you to surrender the rights. Therefore, you have certain responsibilities if you distribute

copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you

must pass on to the recipients the same freedoms that you received. You must make sure

that they, too, receive or can get the source code. And you must show them these terms so

they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright

on the software, and (2) offer you this License giving you legal permission to copy,

distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no

warranty for this free software. For both users’ and authors’ sake, the GPL requires that

modified versions be marked as changed, so that their problems will not be attributed

erroneously to authors of previous versions.

108

Some devices are designed to deny users access to install or run modified versions of the

software inside them, although the manufacturer can do so. This is fundamentally

incompatible with the aim of protecting users’ freedom to change the software. The

systematic pattern of such abuse occurs in the area of products for individuals to use,

which is precisely where it is most unacceptable. Therefore, we have designed this version

of the GPL to prohibit the practice for those products. If such problems arise substantially

in other domains, we stand ready to extend this provision to those domains in future

versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not

allow patents to restrict development and use of software on general-purpose computers,

but in those that do, we wish to avoid the special danger that patents applied to a free

program could make it effectively proprietary. To prevent this, the GPL assures that patents

cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

"This License"refers to version 3 of the GNU General Public License.

"Copyright"also means copyright-like laws that apply to other kinds of works, such as

semiconductor masks.

"The Program"refers to any copyrightable work licensed under this License. Each licensee

is addressed as "you". "Licensees"and "recipients"may be individuals or organizations.

To "modify"a work means to copy from or adapt all or part of the work in a fashion requiring

copyright permission, other than the making of an exact copy. The resulting work is called

a "modified version"of the earlier work or a work "based on"the earlier work.

A "covered work"means either the unmodified Program or a work based on the Program.

To "propagate"a work means to do anything with it that, without permission, would make

you directly or secondarily liable for infringement under applicable copyright law, except

executing it on a computer or modifying a private copy. Propagation includes copying,

distribution (with or without modification), making available to the public, and in some

countries other activities as well.

To "convey"a work means any kind of propagation that enables other parties to make or

receive copies. Mere interaction with a user through a computer network, with no transfer

of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"to the extent that it

includes a convenient and prominently visible feature that (1) displays an appropriate

copyright notice, and (2) tells the user that there is no warranty for the work (except to the

extent that warranties are provided), that licensees may convey the work under this

License, and how to view a copy of this License. If the interface presents a list of user

commands or options, such as a menu, a prominent item in the list meets this criterion.

109

1. Source Code.

The "source code"for a work means the preferred form of the work for making modifications

to it. "Object code"means any non-source form of a work.

A "Standard Interface"means an interface that either is an official standard defined by a

recognized standards body, or, in the case of interfaces specified for a particular

programming language, one that is widely used among developers working in that

language.

The "System Libraries"of an executable work include anything, other than the work as a

whole, that (a) is included in the normal form of packaging a Major Component, but which

is not part of that Major Component, and (b) serves only to enable use of the work with that

Major Component, or to implement a Standard Interface for which an implementation is

available to the public in source code form. A "Major Component", in this context, means a

major essential component (kernel, window system, and so on) of the specific operating

system (if any) on which the executable work runs, or a compiler used to produce the work,

or an object code interpreter used to run it.

The "Corresponding Source"for a work in object code form means all the source code

needed to generate, install, and (for an executable work) run the object code and to modify

the work, including scripts to control those activities. However, it does not include the

work’s System Libraries, or general-purpose tools or generally available free programs

which are used unmodified in performing those activities but which are not part of the work.

For example, Corresponding Source includes interface definition files associated with

source files for the work, and the source code for shared libraries and dynamically linked

subprograms that the work is specifically designed to require, such as by intimate data

communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate

automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,

and are irrevocable provided the stated conditions are met. This License explicitly affirms

your unlimited permission to run the unmodified Program. The output from running a

covered work is covered by this License only if the output, given its content, constitutes a

covered work. This License acknowledges your rights of fair use or other equivalent, as

provided by copyright law.

110

You may make, run and propagate covered works that you do not convey, without

conditions so long as your license otherwise remains in force. You may convey covered

works to others for the sole purpose of having them make modifications exclusively for you,

or provide you with facilities for running those works, provided that you comply with the

terms of this License in conveying all material for which you do not control copyright. Those

thus making or running the covered works for you must do so exclusively on your behalf,

under your direction and control, on terms that prohibit them from making any copies of

your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated

below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any

applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on

20 December 1996, or similar laws prohibiting or restricting circumvention of such

measures.

When you convey a covered work, you waive any legal power to forbid circumvention of

technological measures to the extent such circumvention is effected by exercising rights

under this License with respect to the covered work, and you disclaim any intention to limit

operation or modification of the work as a means of enforcing, against the work’s users,

your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any

medium, provided that you conspicuously and appropriately publish on each copy an

appropriate copyright notice; keep intact all notices stating that this License and any

non-permissive terms added in accord with section 7 apply to the code; keep intact all

notices of the absence of any warranty; and give all recipients a copy of this License along

with the Program.

You may charge any price or no price for each copy that you convey, and you may offer

support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the

Program, in the form of source code under the terms of section 4, provided that you also

meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant

date.

b) The work must carry prominent notices stating that it is released under this License and

any conditions added under section 7. This requirement modifies the requirement in

section 4 to "keep intact all notices".

111

c) You must license the entire work, as a whole, under this License to anyone who comes

into possession of a copy. This License will therefore apply, along with any applicable

section 7 additional terms, to the whole of the work, and all its parts, regardless of how

they are packaged. This License gives no permission to license the work in any other way,

but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices;

however, if the Program has interactive interfaces that do not display Appropriate Legal

Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not

by their nature extensions of the covered work, and which are not combined with it such as

to form a larger program, in or on a volume of a storage or distribution medium, is called an

"aggregate"if the compilation and its resulting copyright are not used to limit the access or

legal rights of the compilation’s users beyond what the individual works permit. Inclusion of

a covered work in an aggregate does not cause this License to apply to the other parts of

the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,

provided that you also convey the machine-readable Corresponding Source under the

terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical

distribution medium), accompanied by the Corresponding Source fixed on a durable

physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical

distribution medium), accompanied by a written offer, valid for at least three years and valid

for as long as you offer spare parts or customer support for that product model, to give

anyone who possesses the object code either (1) a copy of the Corresponding Source for

all the software in the product that is covered by this License, on a durable physical

medium customarily used for software interchange, for a price no more than your

reasonable cost of physically performing this conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the

Corresponding Source. This alternative is allowed only occasionally and noncommercially,

and only if you received the object code with such an offer, in accord with subsection 6b.

112

d) Convey the object code by offering access from a designated place (gratis or for a

charge), and offer equivalent access to the Corresponding Source in the same way

through the same place at no further charge. You need not require recipients to copy the

Corresponding Source along with the object code. If the place to copy the object code is a

network server, the Corresponding Source may be on a different server (operated by you

or a third party) that supports equivalent copying facilities, provided you maintain clear

directions next to the object code saying where to find the Corresponding Source.

Regardless of what server hosts the Corresponding Source, you remain obligated to

ensure that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other

peers where the object code and Corresponding Source of the work are being offered to

the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the

Corresponding Source as a System Library, need not be included in conveying the object

code work.

A "User Product"is either (1) a "consumer product", which means any tangible personal

property which is normally used for personal, family, or household purposes, or (2)

anything designed or sold for incorporation into a dwelling. In determining whether a

product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a

particular product received by a particular user, "normally used"refers to a typical or

common use of that class of product, regardless of the status of the particular user or of

the way in which the particular user actually uses, or expects or is expected to use, the

product. A product is a consumer product regardless of whether the product has

substantial commercial, industrial or non-consumer uses, unless such uses represent the

only significant mode of use of the product.

"Installation Information"for a User Product means any methods, procedures, authorization

keys, or other information required to install and execute modified versions of a covered

work in that User Product from a modified version of its Corresponding Source. The

information must suffice to ensure that the continued functioning of the modified object

code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a

User Product, and the conveying occurs as part of a transaction in which the right of

possession and use of the User Product is transferred to the recipient in perpetuity or for a

fixed term (regardless of how the transaction is characterized), the Corresponding Source

conveyed under this section must be accompanied by the Installation Information. But this

requirement does not apply if neither you nor any third party retains the ability to install

modified object code on the User Product (for example, the work has been installed in

ROM).

113

The requirement to provide Installation Information does not include a requirement to

continue to provide support service, warranty, or updates for a work that has been modified

or installed by the recipient, or for the User Product in which it has been modified or

installed. Access to a network may be denied when the modification itself materially and

adversely affects the operation of the network or violates the rules and protocols for

communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this

section must be in a format that is publicly documented (and with an implementation

available to the public in source code form), and must require no special password or key

for unpacking, reading or copying.

7. Additional Terms.

"Additional permissions"are terms that supplement the terms of this License by making

exceptions from one or more of its conditions. Additional permissions that are applicable to

the entire Program shall be treated as though they were included in this License, to the

extent that they are valid under applicable law. If additional permissions apply only to part

of the Program, that part may be used separately under those permissions, but the entire

Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional

permissions from that copy, or from any part of it. (Additional permissions may be written to

require their own removal in certain cases when you modify the work.) You may place

additional permissions on material, added by you to a covered work, for which you have or

can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,

you may (if authorized by the copyright holders of that material) supplement the terms of

this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16

of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that

material or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified

versions of such material be marked in reasonable ways as different from the original

version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material;

or

e) Declining to grant rights under trademark law for use of some trade names, trademarks,

or service marks; or

114

f) Requiring indemnification of licensors and authors of that material by anyone who

conveys the material (or modified versions of it) with contractual assumptions of liability to

the recipient, for any liability that these contractual assumptions directly impose on those

licensors and authors.

All other non-permissive additional terms are considered "further restrictions"within the

meaning of section 10. If the Program as you received it, or any part of it, contains a notice

stating that it is governed by this License along with a term that is a further restriction, you

may remove that term. If a license document contains a further restriction but permits

relicensing or conveying under this License, you may add to a covered work material

governed by the terms of that license document, provided that the further restriction does

not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the

relevant source files, a statement of the additional terms that apply to those files, or a

notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately

written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this

License. Any attempt otherwise to propagate or modify it is void, and will automatically

terminate your rights under this License (including any patent licenses granted under the

third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular

copyright holder is reinstated (a) provisionally, unless and until the copyright holder

explicitly and finally terminates your license, and (b) permanently, if the copyright holder

fails to notify you of the violation by some reasonable means prior to 60 days after the

cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the

copyright holder notifies you of the violation by some reasonable means, this is the first

time you have received notice of violation of this License (for any work) from that copyright

holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who

have received copies or rights from you under this License. If your rights have been

terminated and not permanently reinstated, you do not qualify to receive new licenses for

the same material under section 10.

115

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.

Ancillary propagation of a covered work occurring solely as a consequence of using

peer-to-peer transmission to receive a copy likewise does not require acceptance.

However, nothing other than this License grants you permission to propagate or modify any

covered work. These actions infringe copyright if you do not accept this License. Therefore,

by modifying or propagating a covered work, you indicate your acceptance of this License

to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from

the original licensors, to run, modify and propagate that work, subject to this License. You

are not responsible for enforcing compliance by third parties with this License.

An "entity transaction"is a transaction transferring control of an organization, or

substantially all assets of one, or subdividing an organization, or merging organizations. If

propagation of a covered work results from an entity transaction, each party to that

transaction who receives a copy of the work also receives whatever licenses to the work

the party’s predecessor in interest had or could give under the previous paragraph, plus a

right to possession of the Corresponding Source of the work from the predecessor in

interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or

affirmed under this License. For example, you may not impose a license fee, royalty, or

other charge for exercise of rights granted under this License, and you may not initiate

litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent

claim is infringed by making, using, selling, offering for sale, or importing the Program or

any portion of it.

11. Patents.

A "contributor"is a copyright holder who authorizes use under this License of the Program

or a work on which the Program is based. The work thus licensed is called the contributor’s

"contributor version".

A contributor’s "essential patent claims"are all patent claims owned or controlled by the

contributor, whether already acquired or hereafter acquired, that would be infringed by

some manner, permitted by this License, of making, using, or selling its contributor version,

but do not include claims that would be infringed only as a consequence of further

modification of the contributor version. For purposes of this definition, "control"includes the

right to grant patent sublicenses in a manner consistent with the requirements of this

License.

116

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under

the contributor’s essential patent claims, to make, use, sell, offer for sale, import and

otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a "patent license"is any express agreement or

commitment, however denominated, not to enforce a patent (such as an express

permission to practice a patent or covenant not to sue for patent infringement). To

"grant"such a patent license to a party means to make such an agreement or commitment

not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the

Corresponding Source of the work is not available for anyone to copy, free of charge and

under the terms of this License, through a publicly available network server or other readily

accessible means, then you must either (1) cause the Corresponding Source to be so

available, or (2) arrange to deprive yourself of the benefit of the patent license for this

particular work, or (3) arrange, in a manner consistent with the requirements of this

License, to extend the patent license to downstream recipients. "Knowingly relying"means

you have actual knowledge that, but for the patent license, your conveying the covered

work in a country, or your recipient’s use of the covered work in a country, would infringe

one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or

propagate by procuring conveyance of, a covered work, and grant a patent license to some

of the parties receiving the covered work authorizing them to use, propagate, modify or

convey a specific copy of the covered work, then the patent license you grant is

automatically extended to all recipients of the covered work and works based on it.

A patent license is "discriminatory"if it does not include within the scope of its coverage,

prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights

that are specifically granted under this License. You may not convey a covered work if you

are a party to an arrangement with a third party that is in the business of distributing

software, under which you make payment to the third party based on the extent of your

activity of conveying the work, and under which the third party grants, to any of the parties

who would receive the covered work from you, a discriminatory patent license (a) in

connection with copies of the covered work conveyed by you (or copies made from those

copies), or (b) primarily for and in connection with specific products or compilations that

contain the covered work, unless you entered into that arrangement, or that patent license

was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or

other defenses to infringement that may otherwise be available to you under applicable

patent law.

117

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that

contradict the conditions of this License, they do not excuse you from the conditions of this

License. If you cannot convey a covered work so as to satisfy simultaneously your

obligations under this License and any other pertinent obligations, then as a consequence

you may not convey it at all. For example, if you agree to terms that obligate you to collect

a royalty for further conveying from those to whom you convey the Program, the only way

you could satisfy both those terms and this License would be to refrain entirely from

conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or

combine any covered work with a work licensed under version 3 of the GNU Affero

General Public License into a single combined work, and to convey the resulting work. The

terms of this License will continue to apply to the part which is the covered work, but the

special requirements of the GNU Affero General Public License, section 13, concerning

interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU

General Public License from time to time. Such new versions will be similar in spirit to the

present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a

certain numbered version of the GNU General Public License "or any later version"applies

to it, you have the option of following the terms and conditions either of that numbered

version or of any later version published by the Free Software Foundation. If the Program

does not specify a version number of the GNU General Public License, you may choose

any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General

Public License can be used, that proxy’s public statement of acceptance of a version

permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no

additional obligations are imposed on any author or copyright holder as a result of your

choosing to follow a later version.

118

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE

COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS

IS"WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.

SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL

NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES

AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR

DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM

(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED

INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE

OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH

HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local

legal effect according to their terms, reviewing courts shall apply local law that most closely

approximates an absolute waiver of all civil liability in connection with the Program, unless

a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

119

ANEXO F - LICENÇA DO TENSORFLOW

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License"shall mean the terms and conditions for use, reproduction, and distribution as

defined by Sections 1 through 9 of this document.

"Licensor"shall mean the copyright owner or entity authorized by the copyright owner that

is granting the License.

"Legal Entity"shall mean the union of the acting entity and all other entities that control, are

controlled by, or are under common control with that entity. For the purposes of this

definition, "control"means (i) the power, direct or indirect, to cause the direction or

management of such entity, whether by contract or otherwise, or (ii) ownership of fifty

percent (50outstanding shares, or (iii) beneficial ownership of such entity.

"You"(or "Your") shall mean an individual or Legal Entity exercising permissions granted by

this License.

"Source"form shall mean the preferred form for making modifications, including but not

limited to software source code, documentation source, and configuration files.

"Object"form shall mean any form resulting from mechanical transformation or translation

of a Source form, including but not limited to compiled object code, generated

documentation, and conversions to other media types.

"Work"shall mean the work of authorship, whether in Source or Object form, made

available under the License, as indicated by a copyright notice that is included in or

attached to the work (an example is provided in the Appendix below).

"Derivative Works"shall mean any work, whether in Source or Object form, that is based on

(or derived from) the Work and for which the editorial revisions, annotations, elaborations,

or other modifications represent, as a whole, an original work of authorship. For the

purposes of this License, Derivative Works shall not include works that remain separable

from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works

thereof.

120

"Contribution"shall mean any work of authorship, including the original version of the Work

and any modifications or additions to that Work or Derivative Works thereof, that is

intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an

individual or Legal Entity authorized to submit on behalf of the copyright owner. For the

purposes of this definition, "submitted"means any form of electronic, verbal, or written

communication sent to the Licensor or its representatives, including but not limited to

communication on electronic mailing lists, source code control systems, and issue tracking

systems that are managed by, or on behalf of, the Licensor for the purpose of discussing

and improving the Work, but excluding communication that is conspicuously marked or

otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor"shall mean Licensor and any individual or Legal Entity on behalf of whom a

Contribution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each

Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,

royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,

publicly display, publicly perform, sublicense, and distribute the Work and such Derivative

Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each

Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,

royalty-free, irrevocable (except as stated in this section) patent license to make, have

made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license

applies only to those patent claims licensable by such Contributor that are necessarily

infringed by their Contribution(s) alone or by combination of their Contribution(s) with the

Work to which such Contribution(s) was submitted. If You institute patent litigation against

any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a

Contribution incorporated within the Work constitutes direct or contributory patent

infringement, then any patent licenses granted to You under this License for that Work shall

terminate as of the date such litigation is filed.

121

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works

thereof in any medium, with or without modifications, and in Source or Object form,

provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this

License; and

(b) You must cause any modified files to carry prominent notices stating that You changed

the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all

copyright, patent, trademark, and attribution notices from the Source form of the Work,

excluding those notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE"text file as part of its distribution, then any Derivative

Works that You distribute must include a readable copy of the attribution notices contained

within such NOTICE file, excluding those notices that do not pertain to any part of the

Derivative Works, in at least one of the following places: within a NOTICE text file

distributed as part of the Derivative Works; within the Source form or documentation, if

provided along with the Derivative Works; or, within a display generated by the Derivative

Works, if and wherever such third-party notices normally appear. The contents of the

NOTICE file are for informational purposes only and do not modify the License. You may

add Your own attribution notices within Derivative Works that You distribute, alongside or

as an addendum to the NOTICE text from the Work, provided that such additional

attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide

additional or different license terms and conditions for use, reproduction, or distribution of

Your modifications, or for any such Derivative Works as a whole, provided Your use,

reproduction, and distribution of the Work otherwise complies with the conditions stated in

this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution

intentionally submitted for inclusion in the Work by You to the Licensor shall be under the

terms and conditions of this License, without any additional terms or conditions.

Notwithstanding the above, nothing herein shall supersede or modify the terms of any

separate license agreement you may have executed with Licensor regarding such

Contributions.

6. Trademarks. This License does not grant permission to use the trade names,

trademarks, service marks, or product names of the Licensor, except as required for

reasonable and customary use in describing the origin of the Work and reproducing the

content of the NOTICE file.

122

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,

Licensor provides the Work (and each Contributor provides its Contributions) on an "AS

IS"BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

implied, including, without limitation, any warranties or conditions of TITLE,

NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR

PURPOSE. You are solely responsible for determining the appropriateness of using or

redistributing the Work and assume any risks associated with Your exercise of permissions

under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including

negligence), contract, or otherwise, unless required by applicable law (such as deliberate

and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for

damages, including any direct, indirect, special, incidental, or consequential damages of

any character arising as a result of this License or out of the use or inability to use the

Work (including but not limited to damages for loss of goodwill, work stoppage, computer

failure or malfunction, or any and all other commercial damages or losses), even if such

Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative

Works thereof, You may choose to offer, and charge a fee for, acceptance of support,

warranty, indemnity, or other liability obligations and/or rights consistent with this License.

However, in accepting such obligations, You may act only on Your own behalf and on Your

sole responsibility, not on behalf of any other Contributor, and only if You agree to

indemnify, defend, and hold each Contributor harmless for any liability incurred by, or

claims asserted against, such Contributor by reason of your accepting any such warranty

or additional liability.

END OF TERMS AND CONDITIONS

	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de abreviaturas e siglas
	Sumário
	INTRODUÇÃO
	Contexto e Motivação
	Objetivos
	Organização do Trabalho

	REVISÃO BIBLIOGRÁFICA
	Visão Geral
	Visão Computacional
	Pré-processamento
	Segmentação de imagens
	Extração de Características
	Reconhecimento

	Redes Neurais Convolucionais Profundas
	Rede Neural Artificial
	Perceptron
	Aprendizado de um Perceptron
	Perceptron de Múltiplas Camadas
	Funções de ativação
	Função de Erro
	Algoritmos de Otimização
	Retropropagação
	Redes Neurais Convolucionais (CNNs)
	Saídas dos modelos de detecção de objetos

	Rastreamento de Objetos
	Deslocamento Médio
	Fluxo Óptico
	Algoritmos de Predição de Trajetória
	SORT

	TensorFlow
	ROS

	DESENVOLVIMENTO
	Hardware utilizado
	Máquina local
	Raspberry Pi 4B

	Treinamento de modelo
	Dataset
	Uso de modelos pré-treinados
	TensorBoard

	Modelos e diferenças
	Algoritmo de Visão
	Ambiente de Desenvolvimento
	Detecção de Objeto
	Rastreamento de Objeto
	Critérios
	Coordenadas extraídas

	Predição de trajetória
	Filtro Kalman
	Cálculo de FPS
	Considerações

	Implementação do ROS
	Publisher Node
	Message
	Topic
	Subscriber

	RESULTADOS
	Treinamento do modelo
	Detecção e Rastreamento de Objetos
	ROS
	Uso da Raspberry

	CONCLUSÃO
	REFERÊNCIAS
	APÊNDICE A - CÓDIGO DE INFERÊNCIA
	APÊNDICE B - DOWNLOAD DE MODELOS
	APÊNDICE C - TREINAMENTO DE MODELO
	APÊNDICE D - VERSÕES DE BIBLIOTECAS COMPATÍVEIS
	ANEXO A - LICENÇA DO LABELIMG
	ANEXO B - LICENÇA D0 NUMPY
	ANEXO C - LICENÇA DO OPENCV
	ANEXO D - LICENÇA DO ROS
	ANEXO E - LICENÇA DO SORT
	ANEXO F - LICENÇA DO TENSORFLOW

