UNIVERSIDADE DE SAO PAULO
ESCOLA DE ENGENHARIA DE SAO CARLOS

LEANDRO YUJI KANNO

Desenvolvimento de algoritmo de visdo computacional com
redes neurais para navegacao de robd aquatico

Sao Carlos
2024

LEANDRO YUJI KANNO

Desenvolvimento de algoritmo de visao computacional com
redes neurais para navegacao de robd aquatico

Monografia apresentada ao Curso
de Engenharia Mecatrbnica, da
Escola de Engenharia de Sao Car-
los da Universidade de S&o Paulo,
como parte dos requisitos para
obtencéo do titulo de Engenheiro
Mecatrénico.

Orientadora: Prof2. Dra. Maira
Martins da Silva

Sao Carlos
2024

AUTORIZO A REPRODUGCAO TOTAL OU PARCIAL DESTE TRABALHO,
POR QUALQUER MEIO CONVENCIONAL OU ELETRONICO, PARA FINS
DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE.

Ficha catalogréfica elaborada pela Biblioteca Prof. Dr. Sérgio Rodrigues Fontes da
EESC/USP com os dados inseridos pelo(a) autor(a).

K16d

Kanno, Leandro Yuji

Desenvol vinmento de al goritnmo de viséo
conput aci onal comredes neurais para navegacado de robo
aquatico / Leandro Yuji Kanno; orientadora Maira
Martins da Silva. Sdo Carlos, 2023.

Monogr afi a (Graduagdo em Engenharia Mecatr 6ni ca)
-- Escol a de Engenharia de Sado Carl os da Universi dade
de Sédo Paul o, 2023.

1. Visdo conputacional. 2. TensorFlow 3.
Det eccdo de hjetos. 4. Rastreamento de Objetos. |I.

Titul o.

Eduardo Graziosi Silva - CRB - 8/8907

FOLHA DE AVALIAGAO

Candidato: Leandro Yuji Kanno

Titulo: Desenvolvimento de algoritmo de visdo computacional com
redes neurais para navegacao de robd aquatico

Trabalho de Conclusao de Curso apresentado a
Escola de Engenharia de Sao Carlos da
Universidade de Sao Paulo

Curso de Engenharia Mecatroénica.

BANCA EXAMINADORA

Professora Maira Martins da Silva
(Orientadora)

Mane-Wn.de S

(assinatura)

Nota atribuida: 10,0 (dez)

Professor Adriano Almeida Gongalves Siqueira

V4 1 Ion
Nota atribuida: 10,0 (dez) ave- *

(assinatura)

Professor Alberto Cliquet Junior ,
“Maven-de Sda.

(assinatura)

Nota atribuida: 10,0 (dez)

Média: 10,0 ¢)
dez

Resultado: APROVADO

Data: 21/12/2023.

Este trabalho tem condigbes de ser hospedado no Portal Digital da Biblioteca da EESC

7 1 .
SIM ﬁ NAO [Visto do orientador m *m

Este trabalho é dedicado ao laboratério de Dinamica,
como uma contribuicdo para o desenvolvimento de novas ideias
e oportunidades de aprendizados.

AGRADECIMENTOS

Agradeco primeiramente aos meus pais, que sempre estiveram presentes e incentivaram
minhas escolhas e fizeram seu maximo para ajudar a segui-las. Ao meu pai, agradeco por
sempre ter sido uma pessoa exemplar que zelou pela minha seguranca, futuro e sonhos.
A minha mae, agradeco por ter sido motivagéo e ter confiado em mim até seu ultimo dia.
Suas ultimas palavras dirigidas a mim ainda ecoam em meu coragao, € nao seria possivel
seguir em frente sem elas.

Minha eterna gratiddo a Luna, que em sua inocéncia e pureza sempre deu a familia
alegria em bons momentos e conforto nos momentos de maiores pesares.

Agradeco também as amizades que fiz dentro e fora da universidade, que ndo s6 me
apoiaram academicamente, como também em meu luto. Breno, Felippe, Jodo Guilherme,
Kamila, Samanta e Vinicius.

Sou grato também a minha grande amiga e companheira Bruna, que colaborou de
diversas formas ao longo do desenvolvimento do trabalho e em multiplos campos da vida,
manteve tanto meus pés no chdo e meu foco para frente.

Por fim, agradeco a professora doutora Maira Martins, ndo apenas por ter feito muito
pela comunidade de discentes da USP, como também por ter me dado a oportunidade
de aprender mais sobre assuntos que me interesso muito e, ainda mais, permitiu que a
liberdade criativa orientasse o desenvolvimento deste projeto.

“Divida cada dificuldade em quantas partes for viavel
e necessario para a resolver.”
René Descartes

RESUMO

KANNO, L. 124p. Desenvolvimento de algoritmo de visao computacional com redes
neurais para navegacao de rob6 aquatico. 2023. Monografia (Trabalho de Concluséo de
Curso) — Escola de Engenharia de Sao Carlos, Universidade de Sdo Paulo, Sao Carlos,
2023.

O crescente progresso de tecnologias de processamento em escalas cada vez menores
possibilitou 0 uso de tarefas que antes eram computacionalmente dispendiosas em sistemas
embarcados de dimensdes reduzidas. Em diversas situa¢des a portabilidade e baixo peso
sao parametros desejaveis, e, com o objetivo de complementar o estudo de robés macios
aquaticos bioinspirados, esta tese busca desenvolver um cddigo que colete a localizagao da
posigao relativa dos objetos no ambiente em relac@o a camera acoplada ao sistema robético.
Para tal, com o requisito da versatilidade em termos de modos de atuacao e tipos de objetos
que o algoritmo é capaz de detectar, seréo utilizados modelos de redes neurais para realizar
a inferéncia das imagens coletadas. Dentre as vantagens do uso de aprendizado profundo
estao a possibilidade de alternar entre modelos pré existentes e variar entre a velocidade,
Ou seja, maior ou menor exigéncia de recursos computacionais, e a acuracia, o que permite
a adequacao a diferentes hardwares. A linguagem de programacao Python sera utilizada
junto a biblioteca TensorFlow, que fornece APIs de alto nivel para aprendizado de maquina.

Palavras-chave: Visdo computacional. TensorFlow. Detec¢ao de Objetos. Rastreamento de
Objetos.

ABSTRACT

KANNO, L. P. Development of a computer vision algorithm with neural networks for
aquatic robot navigation.. 2023. 124p. Monograph (Conclusion Course Paper) — Escola de
Engenharia de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, 2023.

The growing progress of processing technologies on increasingly smaller scales has enabled
the use of tasks that were previously computationally expensive in embedded systems of re-
duced dimensions. In various situations, portability and low weight are desirable parameters.
With the aim of complementing the study of bioinspired aquatic soft robots, this thesis seeks
to develop code that collects the location of the relative position of objects in the environment
concerning the camera attached to the robotic system. To achieve this, with the requirement
of versatility in terms of operating modes and types of objects that the algorithm can detect,
neural network models will be used to infer the collected images. Among the advantages of
using deep learning are the possibility of switching between pre-existing models and varying
between speed, i.e., higher or lower computational resource requirements, and accuracy,
allowing adaptation to different hardware. The Python programming language will be used
alongside the TensorFlow library, which provides high-level APIs for machine learning.

Keywords: Computer Vision. TensorFlow. Object Detection. Object Tracking.

LISTA DE ILUSTRACOES

[Figura 1 — Etapas do processamento de imagem e visao computacionall 30
[Figura2 — Modelo logico de um neuronio humano| 30
[Figura3 — Neuronio artificial) o 31
[Figura 4 — Perceptron multicamaadas|. 32
[Figura 5 — Funcao de perda com o gradiente em direcao ao minimo| 36
[Figura 6 — Momentum utilizado para encontrar o minimodo erro| 38
[Figura 7 — Rede Neural Convolucional sobre imagem| 40
[Figura 8 — Mascaras e caixas delimitadoras.| 41
[Figura 9 — Pontos chave naimagem.| 41
[Figura 10 — Resultado do algoritmo de deslocamento medio sobre carro| 42
[Figura 11 — Campos de fluxo de imagem previstos pelo algoritmo de fluxo optico| . . 43
[Figura 12 — Interseccao sobre Uniao| 45
[Figura 13 — Diagrama conceitual do funcionamento do lensorFlow| 47
[Figura 14 — ROS: Mensagens entre nos Publisher e Subscriber|. 48
[Figura 15 — Raspberry P14B|. e 50
[Figura 16 — Exemplo de imagem utilizada para realizar o treinamento darede| 51
[Figura 17 — Tensorboard - Grafico da fungaodeperda 53
[Figura 18 — Inferéncia do modelo sobre imagem| 56
[Figura 19 — Ajuste de trajetoria atraves das coordenadas de centro e do objeto] . . . 59
[Figura 20 — Uso do filtro Kalman para otimizacao do ajuste de trajetoria e perseguicao |
[do objeto alvo em movimento. Fonte: Autor] 59
[Figura 21 — Organizacao de um workspace (espaco de trabalho) ROS| 62
[Figura 22 — Pastasdoprojeto] 63
[Figura 23 — Resultado apos nove horas detreinol 65
[Figura 24 — Resultado apos cincodias detreinof 66
[Figura 25 — Imagem da inferencia com multiplos objetos| 67
[Figura 26 — Modulo TensorFlow nao disponivel ao executar o ROS na maquina local |
[Windows 11 e 68
[Figura 2/ — Erro da requisicao do Servidoro e e e e 69

LISTA DE TABELAS

[Tabela 1 — Comparacgao de algoritmos de rastreamento de objetos| 44

[Tabela 2 — Comparacao de performance de modelos de deteccao de objetos| . . . 54

LISTA DE ABREVIATURAS E SIGLAS

API Application Programming Interface (Interface de Programacgéo de Aplica-
Gao)
ROS Robot Operating System

MS COCO Microsoft Common Objects in Context

mAP Mean Average Precision

SUMARIO

1 INTRODUCAOD i v ittt e e et et e et e e et e e e 25
(1.1 Contextoe Motivacao| 25
(1.2 Objetivos| e 25
1.3 Organizacaodo Trabalho| 25
2 REVISAOBIBLIOGRAFICA|ttt e 27
2.1 VisaoGerall 27
(2.2 Visao Computacional, 27
[2.2.1 Pre-processamento| 28
[2.2.2 Segmentacaodeimagens|. 28
[2.2.3 Extracao de Caracteristicas|. 28
224 Reconhecimento| L. 29
2.3 Redes Neurais Convolucionais Profundasl 29
3.1 Rede Neural Artificiall 30
[2.3.2 Perceptron| 31
[2.3.3 Aprendizado de um Perceptron|. 31
[2.3.4 Perceptron de Multiplas Camadas| 32
[2.3.5 Funcoesdeativacao| L. 33
[2.3.6 FuncaodeErrol 35
[2.3.7 Algoritmos de Otimizacao| 36
[2.3.8 Retropropagacaol 39
[2.3.9 Redes Neurais Convolucionais (CNNs), 39
[2.3.10 Saidas dos modelos de deteccao de objetos| 40
(2.4 Rastreamentode Objetos| 41
241 Deslocamento Mediol. 41
2.4.2 Fluxo Optico| 42
[2.4.3 Algoritmos de Predicao de Trajetoria| 43
244 SORTI. 43
2.5 TensorFlow| 45
26 ROS| 46
3 DESENVOLVIMENTOQI ¢ it e e e e e e e e e e e a s 49
3.4 Hardware utilizadol 49
(3.1.1 Maquinalocal 49
[3.1.2 Raspberry Pi4B| 49
B2 Treinamentodemodelol 50

13.2.2 Uso de modelos pre-treinados| 52

3.2.3 TensorBoard 52
3.3 Modelosediferencas| 52
3.4 Algoritmode Visao|. 53
4.1 Ambien Desenvolvimentol 54
13.4.2 Deteccaode Objeto| 55
13.4.3 Rastreamentode Objeto|. 55
.4.3.1 riterios| Lo 57
4.3.2 rden xtraidasl 58
13.4.4 Predicao de trajetorial L oL 58
3.4.4.1 FiltroKalman| 60
4.4.2 alcul EPS| e 60
[3.4.4.3 Consideracoes| 62
3.5 Implementacaodo ROS| 62
3.9.1 PublisherNode| 62
13.0.2 Message| 64
13.5.3 TopIC| 64
3.5.4 Subscriberl 64
4 RESULTADOS e e e e e e e e e e e 65
41 Treinamentodomodelo 65
4.2 Deteccao e Rastreamento de Objetos| 65
4.3 ROS| 67
4.4 UsodaRaspberry| 67
5 CONCLUSAD it e e e e e e e e e e e e e e 71
REFERENCIAS! e e e e e e e e e e e 73
IAPENDICE A - CODIGO DE INFERENCIA| 75
IAPENDICE B - DOWNLOAD DE MODELOS/ 85
IAPENDICE C - TREINAMENTO DE MODELO| 87
IAPENDICE D - VERSOES DE BIBLIOTECAS COMPATIVEIS| 95

[ANEXO A-LICENCADOLABELIMG]. 97
[ANEXOB-LICENCADONUMPY| 99

25
1 INTRODUGCAO

1.1 Contexto e Motivacao

A coleta de dados em ambientes subaquéticos se beneficia substancialmente de disposi-
tivos com boa manobrabilidade e rendimento energético. Nesse contexto, exploram-se novas
alternativas de mecanismos de locomog¢ao, com a robotica macia bioinspirada visando a
eficiéncia de uma estrutura capaz de realizar movimentos ondulatérios e oscilatérios para
deslocar-se. Com o intuito de avaliar a eficacia dessa abordagem, é fundamental analisar
a dindmica do rob6 ao executar tarefas em que a performance de trajetérias variaveis se
torna um requisito para 0 bom desempenho do sistema. Isso se torna possivel por meio da
execucao da funcao de perseguigdo de um objeto alvo.

A viabilidade dessa abordagem é facilitada pelo campo de estudo da visdo computacio-
nal, que oferece diversas possibilidades e solugbes para a detecgédo de objetos. Utilizando
técnicas de processamento e operagdes sobre as imagens, bibliotecas em Python sao
empregadas para extrair coordenadas de objetos. O laboratério conduziu estudos iniciais
utilizando técnicas de visdo computacional com detecg¢édo de objetos baseada na analise de
formas e padrdoes geométricos. Agora, esta tese propde a utilizagdo de redes neurais para
detectar uma ampla gama de objetos.

Entre as vantagens das redes neurais destaca-se a versatilidade, pois conseguem lidar
com diferentes formas e objetos que possuem variagdes expressivas de caracteristicas,
dependendo do angulo e das condigbes de iluminacao. Esses séo fatores que, em outras
técnicas, dificultariam significativamente a tarefa da inferéncia de objetos na imagem. No
entanto, por meio do aprendizado profundo, a viabilidade da operacao ndo é comprometida.

1.2 Objetivos

Este trabalho consiste em desenvolver um cédigo que realiza a inferéncia de obje-
tos nas imagens coletadas e, ndo sé isso, o rastreamento dos objetos presentes. Para
atender a diferentes interesses de operagoes e testes, alguns requisitos de versatilidade
sdo desejados, de forma que seja possivel priorizar diferentes classes de objetos €, no
caso de existirem multiplos objetos da mesma categoria na imagem coletada pela camera,
estabelecer critérios para definir um deles em especifico.

1.3 Organizacao do Trabalho

Este trabalho foi dividido em 5 capitulos, seguidos da se¢ao de Referéncias. O presente
capitulo apresenta a contextualizagao e objetivos. O segundo capitulo abordara a Revisao da
Literatura que contera conceitos imprescindiveis para a compreensao do desenvolvimento do
trabalho. O terceiro capitulo lista os materiais utilizados, suas especifica¢oes, limitacdes para

26

execugao dos objetivos propostos e processo de desenvolvimento a partir deles. A quarta
secao consta os resultados obtidos através dos procedimentos descritos desenvolvimento. A
quinta sec¢ao contém as conclusdes, consideracdes e perspectivas para o desenvolvimento
de futuros trabalhos.

27

2 REVISAO BIBLIOGRAFICA

2.1 Visao Geral

Esta secao tem o objetivo de fornecer os alicerces tedricos para a compreensao do
trabalho desenvolvido, através do entendimento dos principais fundamentos que compdem
os algoritmos de visdo computacional.

A apresentacao dos conceitos primordiais sera de suma importancia para que a abor-
dagem das principais solugdes base existentes possa ser comparada através do mesmo
escopo de premissas, desempenho e propdsitos, como nos casos em que ha diferentes
alternativas para realizar calculos e tarefas dentro do algoritmo.

Grande parte das escolhas leva em consideragao os recursos computacionais dispo-
niveis e a viabilizagcao da coleta de dados e elaboracado de uma resposta em tempo real,
visto que dentro da visdo computacional existem operacdées em que nao é necessaria uma
resposta imediata, como no caso de andlises de imagens e videos coletados previamente,
0 que nao é o caso de um sistema que visa controlar um robé em movimento.

O funcionamento da aplicacdo em questao, a locomog¢éao até um objeto, pode ser dividido
nas etapas da deteccao do objeto, o rastreamento dos elementos presentes e a escolha de
um deles como alvo do robd. As etapas da detecgao e rastreamento sdo as mais complexas
e possuem solucdes ja trabalhadas que devem ser analisadas e adaptadas, enquanto o
estabelecimento de critérios para definir um alvo é uma questao especifica e sera abordada
na secao sobre o desenvolvimento do codigo.

2.2 Visao Computacional

A visdo computacional € um campo que visa fornecer aos computadores a capacidade de
extrair informacdes de imagens de forma auténoma e possui diversas aplicacdes cotidianas
como reconhecimento de objetos, deteccdo de padrdes, reconhecimento de impressoes
digitais, reconhecimento facial, entre outros.

O procedimento para realizar essas tarefas pode variar bastante dependendo de qual
o objetivo a ser cumprido e dispde de uma grande variedade de técnicas e métodos que
permitem a analise e interpretagdo de videos por sistemas computacionais.

Através de principios fundamentais da geometria, estatistica, algebra linear e proces-
samento de sinais, os pixels que compdéem os quadros analisados tém seus padroes e
caracteristicas relevantes extraidas. Tipicamente, os sistemas de visdo computacional
passam pelas etapas descritas a seguir. (GONZALEZ, 2008)

28

2.2.1 Pré-processamento

Antes da analise dos pixels presentes, o pré-processamento da imagem realiza tarefas
como a redugao de ruidos, normalizacao da iluminagao, ajuste de contraste e outros
procedimentos que visam a melhora da qualidade dos dados e a facilitacdo da extracao de
caracteristicas.

2.2.2 Segmentacao de imagens

A segmentacao divide uma imagem em regides que contém padrdes com indicativos
de que possuem elementos de interesse. Essa segmentacéo pode ocorrer atraves de
procedimentos que levam em conta as coordenadas da regido, o contorno de objetos
detectados por varreduras que analisam o gradiente dos valores ao longo dos pixels,
segmentagdo semantica, entre outros métodos. Uma segmentacdo bem sucedida identifica
objetos individuais.

2.2.3 Extracao de Caracteristicas

Na etapa da extragao de caracteristicas sao identificados padrées distintos nas regides
de interesse previamente segmentadas, com técnicas como a detecc¢ao de bordas, linhas,
regides e pontos de interesse e extracao de descritores (GONZALEZ, 2008). Podemos citar
como exemplos de descritores analisados:

* Histogramas de cores

Andlise da distribuicdo de cores na porcdo da imagem através do padrao do histo-
grama.

» Textura

Descritores que se baseiam em padrdes de textura, como, por exemplo, filtros Gabor
ou caracteristicas Haralick.

+ Gradientes e bordas

Representam a intensidade das mudancas de valores armazenados nos pixels, como
o Histograma de Gradientes Orientados (HOG).
* Momentos de imagem

Descreve a forma e distribuicdo dos pixels e morfologias encontradas na imagem.

* Descritores de forma

Parametros e padrdes geométricos que caracterizam a forma do elemento de inte-
resse.

29

« Descritores de borda

Analisa as bordas detectadas na imagem e seus padrdes quando relacionadas.

 Descritores locais
Descreve caracteristicas localizadas como, por exemplo, SIFT (Scale-Invariant Feature
Transform) e SURF (Speeded Up Robust Features).

+ Descritores de frequéncia

Relaciona-se as caracteristicas da frequéncia da imagem. Usualmente a partir da
conversao da imagem para sua correspondente no dominio da frequéncia através da
Transformada de Fourier.

* Momentos invariantes
Descritores que, mesmo com transformacdes geométricas como rotacao, translacao
e alteracdes na escala, permanecem inalterados.

» Histograma de gradientes de cores
Descreve a distribuicdo dos gradientes de cores de acordo com o sistema de codifica-
¢ao da imagem e seus canais.

« Redes neurais pré-treinadas

Descritores pautados em redes neurais treinadas para tarefas especificas de visao
computacional.

2.2.4 Reconhecimento

Através das caracteristicas extraidas é feita a associacao de objetos a classes ou
identidades. Os elementos detectados passam entdo por uma andlise a fim de que seja
inferido se aquele conjunto de pixels possui evidéncias suficientes para que seja classificado
como pertencente a uma das categorias de interesse do algoritmo.

2.3 Redes Neurais Convolucionais Profundas

O aprendizado profundo € um subconjunto dentro do aprendizado de maquina e se
baseia em redes neurais profundas. Ao contrario do aprendizado de maquina tradicional,
em que os dados se caracterizam por serem estruturados e bem definidos, o aprendizado
profundo é adequado para tarefas complexas com dados ndo estruturados, como em
aplicagcbes que envolvem o reconhecimento de padrées em sons e imagens.

30

Figura 1 — Etapas do processamento de imagem e visdo computacional

As saidas destes processos normalmente sdo imagens

>

w

Processamento Processamento Processamento 8

i Compressao Sai 3

de |n'!agem de ondas e P morfoldgico o

colorida multirresolugdo e

@

4

[+

N U U P 3

o

[}

o

~ - w

:?testaura;ao da Segmentagiio g
magem

=) 2

3

-3

3

m

2

m

~ w

Filtro e realce da Representacao e o

i descricdo o

Imagem - Conhecimento base - ¢ &

(=2

[

-

[=]

@

o

m

3

o

| Aquisicao da Reconhecimento — %

Dominio)| Imagem = | de objetos 3

dos dados

Modificado de Rafael C. Gonzalez, 2008

2.3.1 Rede Neural Artificial

Uma rede neural artificial (artificial neural network, ANN) é projetada para fazer a mimese
de como funciona um cérebro humano: aprende a reconhecer e classificar de acordo com
a andlise de padrdes. Cientistas da computacao se inspiraram no sistema de neurénios,
humanos que se conectam e cruzam informacgdes, para projetar as redes neurais artificiais.

Figura 2 — Modelo légico de um neurénio humano

Nicleo Dendeitos Terminal do axénio
X1~ .
R — ——. e .
x2 3 o= === . yz
- \ *yn
xn = Axbnio com mielina

Saidas
Entradas

Modificado de (ANSARI, [2020).

Tanto nos neurbnios biolégicos quanto nos das redes neurais artificiais, os sinais de
entrada x1, x2, ..xn sdo associados a pesos w1, w2, ..wn, e esses sinais sao entao proces-
sados através de funcgdes para gerar saidas. A unidade de processamento que combina
esses sinais de entrada é chamada de neurénio e sua fungdo matematica € chamada de
funcao de ativacao.

31

Figura 3 — Neurbnio artificial

Modificado de (ANSARI, [2020).

2.3.2 Perceptron

Um Unico neurénio de uma rede neural é chamado de perceptron, ele implementa
uma fungdo matematica que opera nos sinais de entrada e gera saidas. Isoladamente,
forma a rede neural mais simples, como no caso da Figura[3| As entradas para o neur6nio
sdo coletadas do ambiente através de dispositivos como cameras ou outros aparatos de
sensoriamento, mas também podem vir das saidas de outros neurdnios.

2.3.3 Aprendizado de um Perceptron

O objetivo de aprendizado de um perceptron é a determinacédo dos pesos ideais para
cada sinal de entrada. O algoritmo de aprendizado atribui arbitrariamente pesos a cada
sinal de entrada, que sao multiplicados pelos seus pesos correspondentes. O resultado,
peso vezes valor do sinal, € somado para calcular uma saida. A computagao é representada
pelas seguintes equacoes:

f(x) = wixy + woxs + ... + Wy,

Em alguns casos € interessante fornecer pesos iniciais para direcionar o resultado
através de um viés x0

f(x) = zo + wizy + woms + ... + WpTy,

O neurdnio recebe um grande numero de entradas, e entdo uma funcéo de otimizacao
adequa os pesos usando fungées matematicas chamadas otimizadores, e a computagao é
repetida com os novos pesos. Essa iteragdo continuamente otimiza os valores até que o
resultado seja satisfatorio para o conjunto de entradas fornecido. Esse processo constitui 0
aprendizado do neurénio.

32

2.3.4 Perceptron de Multiplas Camadas

Uma rede neural artificial tipica contém varios perceptrons. As entradas sao processadas
por um grupo de neurdnios e cada um deles processa as entradas de forma independente.
As saidas deste grupo de neurbnios sdo alimentadas para outro neurénio ou camada
neurdnios. Desta forma, a saida de uma camada atua como entrada para a proxima camada,
e é possivel adicionar indefinidas camadas para treinar a rede neural. Essa organizagao de
neurbnios em camadas € comumente conhecida como Perceptron de Multiplas Camadas
(MLP), como mostra a Figura [4]

Figura 4 — Perceptron multicamadas

; Camada de
Caracteristicas Camada Camada

trad
de amtrade niracs oculta 1 oculta 2 Ea‘mada de
saida

Modificado de (ANSARI, [2020)

MLPs séo uteis pois, por exemplo, ao levarmos em consideracdo um unico neurénio
com uma entrada, ele ter4 uma fungéo de ativagao que se assemelha a:

f(z) = wixy + x9

O que representa uma fungao linear. Entretanto, a maioria dos problemas encontrados no
mundo real ndo exibem comportamentos lineares, e Perceptrons de multiplas camadas
modelam a néo linearidade e podem abordar situagdes do cotidiano de forma mais precisa
do que modelos baseados em neurdnios individuais e algoritmos de aprendizado de maquina
como regressao linear e regressao logistica.

Aprendizado profundo é outra nomenclatura dada a uma rede neural artificial de varias
camadas ou perceptron de varias camadas, e diferentes tipos de sistemas sdo empregados
dependendo da arquitetura da rede neural (CONVOLUTIONAL. ..}) e seu tipo de operagao.

33

Por exemplo, redes neurais feed-forward, redes convolucionais, redes neurais recorrentes,
autoencoders e deep beliefs sdo tipos distintos de sistemas de aprendizado profundo.

Um MLP consiste em pelo menos trés tipos de camadas: camada de entrada, camadas
ocultas e camada de saida. Pode haver mais de uma camada oculta e cada uma contém
um ou mais neuronios.

« Camada de entrada

Essa camada recebe a entrada de uma fonte externa, como, por exemplo, imagens.
Os inputs para esta camada sao as caracteristicas. Os neurdnios na camada de
entrada ndo realizam nenhuma computacao e apenas passam seus inputs para a
préxima camada. O numero de neur6nios na camada de entrada € igual ao nimero de
caracteristicas, que, no caso da visdo computacional, equivale ao numero de pixels. A
Figura [4] mostra uma arquitetura de rede neural genérica.

« Camadas ocultas

As camadas entre as camadas de entrada e saida sdo chamadas de camadas ocultas.
Uma rede neural deve ter pelo menos uma camada oculta pois € essa camada que
gera o aprendizado e ha os calculos necessarios nos neurdnios para o aprendizado.
A complexidade e exigéncia de poder computacional aumenta com o ndmero de
camadas.

+ Camada de saida

A camada de saida € a ultima camada, e o numero de neur6nios na camada de saida
depende do tipo de situagao para a qual a rede neural foi projetada. Para regressao,
onde a rede deve fazer a previsdo de um valor continuo, a camada de saida tem
apenas um neurdnio. Ja para problemas de classificagcao entre classes, a camada de
saida tem o mesmo numero de neurbnios que o numero de classes.

2.3.5 Funcoes de ativacao

A funcao de ativagdo determina se o neurénio associado deve ser ativado ou nao com
base na relevancia da entrada do neurbnio para o modelo e normaliza a saida de cada
neurdnio para um valor na faixa [0,1] ou [-1,1].

Vérias funcdes matematicas sdo usadas como ativagdo. As seguintes funcdes de
ativacdo sao utilizadas pelo TensorFlow:

» Funcao de Ativacao Linear

A funcéo de ativacgéao linear ndo é utilizada no aprendizado profundo pois apresenta
problema com a derivagdo. E comum utilizar o método de retropropagacéo, que
emprega uma técnica chamada descida de gradiente. Nesta técnica, ha o calculo da

34

derivada de primeira ordem da entrada, o que, no caso da fungao linear, resulta em
zero e torna impossivel retroceder aos pesos das entradas.

Outro problema é a restricao a Linearidade: a Ultima camada sera uma fungao linear
da primeira camada, logo a rede é equivalente a apenas uma camada, o que nao é
adequado para resolver problemas complexos.

f(x) =z + w1 + wors + w33 + ... + Wy,

Func¢ao de Ativacao Sigmoide ou Logistica

A fungédo sigmdide resulta em um valor entre 0 e 1, 0 que torna a saida menos
sucinta a variagdes abruptas da entrada. Outra vantagem é que nao gera um valor
constante a partir de uma derivada de primeira ordem, comportamento adequado
para deep learning com retropropagacao. A maior desvantagem da funcao sigmdide
€ que a saida ndo muda entre valores de entrada grandes ou pequenos, 0 que a
torna inadequada para casos em que o vetor de caracteristicas recebidas pela fungao
contém valores grandes ou pequenos. Uma alternativa € normalizar seu vetor de
caracteristicas para ter valores entre -1 e 1 ouentre 0 e 1.

1

B =1y

TanH/Tangente Hiperbolica

Semelhante a funcao de ativacao sigméide, com a diferenga de que o TanH é centrado
em zero, e, COmo consequéncia, ela modela entradas com valores pequenos, grandes
e neutros.

ef —e’ %

e+ e %

Unidade Linear Retificada (Rectified Linear Unit, ReLU)

tanh(z) =

Caso z seja positivo, a fungao RelLU considera esse valor como saida, e, se for
negativo, a saida é zero. A saida varia entre 0 e infinito, e a vantagem desta funcao
de ativagcao que ela é computacionalmente eficiente e permite que a rede convirja, ou
seja, encontre 0s pesos ideais para operagao do modelo, rapidamente. Além disso, o
ReLU é nao linear.

A maior desvantagem da funcdo RelLU € que o gradiente da funcéo se torna zero
para entradas zero ou negativas, comportamento inadequado para retropropagacao
quando a entrada possui valores negativos. Esta funcdoé amplamente utilizado no
treinamento da maioria dos modelos de visdo computacional visto que os pixels de
imagem nao tém valores negativos.

f(z) = max(0, z)

35

* Leaky RelLU

Leaky RelLU oferece uma pequena variagao do ReLU. Em vez de anular o valor
negativo de z, ele o multiplica por um nimero pequeno, como 0,01. O Leaky ReLU
tem pequenos valores em sua parte negativa e permite a retropropagagado para
entradas negativas, com a desvantagem de que o resultado do Leaky ReLU nao é
consistente nesses valores.

» Unidade Linear Exponencial Escalonada (Scaled Exponential Linear Unit, SELU)

A funcdo SELU gera saidas "auto-normalizadas", com média 0 e desvio padréo 1.
Isso implica que toda a rede exibe comportamento normalizado até a saida na ultima
camada.

Com esta funcéao, o aprendizado € altamente robusto e permite treinar redes com
muitas camadas, visto que a auto-normalizag&o torna-se eficiente em termos de
computacao e tende a convergir mais rapidamente. Outra vantagem é que ela supera
os problemas de gradientes com variagcées abruptas ou que diminuem bruscamente
quando as caracteristicas de entrada sdo muito altas ou muito baixas.

1.67326324(e” — 1) paraz < 0
f(z) = 1.05070098 -

0 paraz > 0

» Funcao de Ativacao Softplus

A funcao de ativagao softplus aplica suavizacao ao valor da funcéo de ativacao z e
utiliza o logaritmo do exponencial, também & chamado de fungdo SmoothReLU. A
primeira derivada da funcao softplus € a mesma que a funcao de ativagao sigmoidal.

In(1 + €*)

« Softmax

Fungéo que recebe um vetor de numeros reais como entrada, normaliza os valores
presentes em uma distribuicdo probabilistica e gera saidas no intervalo (0,1). E
frequentemente usado como a ativagao para a camada de saida de uma rede neural
de classificagao, e seu resultado é interpretado como a probabilidade prevista de cada

classe.

2.3.6 Funcao de Erro

No aprendizado de maquina o erro € a diferenga entre o resultado esperado e o resultado
previsto.

36

Erro = Resultado Esperado - Resultado Previsto.

O objetivo do aprendizado da rede é calcular valores otimizados de pesos, ou seja, que
resultam em erros minimos. Durante o processo de aprendizado ha o ajuste de pesos de
forma iterativa.

O ponto em que a derivada primeira da funcédo de erro é zero é o objetivo ideal que indica
um minimo e encontrar os pesos onde a funcao de erro € minima é tarefa das fungées de
erro, também sao conhecidas como fungdes de perda, e sdo enquadradas em trés principais
categorias:

Funcoes de Perda para Regressao: Para treinar modelos que desejam prever resulta-
dos continuos.

Funcoes de Perda para Classificacao Binaria: Treina modelos que preveem entre
dois resultados, util em casos como, por exemplo, detectar a presenca de doencas.

Funcoes de Perda para Classificacao Multiclasse: Usadas quando os modelos
precisam prever varias classes, como por exemplo na detec¢do de objetos.

2.3.7 Algoritmos de Otimizacao

O algoritmo de aprendizado otimiza a fungéo de perda para encontrar pesos que minimi-
zem o valor da perda iterativamente. A fungédo que otimiza a fungao de perda € chamada
algoritmo de otimizacao ou otimizador, que oferecem diferentes graus de precisdo e
velocidade. Alguns conceitos sdo comuns aos algoritmos de otimizagédo. (GOODFELLOW;
BENGIO; COURVILLE, 2016)

Minimos Locais e Globais ocorrem pois ha situagcées em que podem haver dezenas
ou até centenas de caracteristicas para as quais 0s pesos precisam ser aprendidos, e,
nesses casos, a curva da fungao pode ter varios pontos que pareceriam minimos, chamados
minimos locais. O objetivo do algoritmo de descida de gradiente é encontrar o minimo global.

Figura 5 — Fungao de perda com o gradiente em direcdo ao minimo

perda

Minime local

Peso
Minimo Ponto da cela

Modificado de (ANSARI, [2020)

Minimeo global

37

A Taxa de Aprendizado precisa ser cautelosamente selecionada, pois um valor grande
pode fazer com que o algoritmo oscile e ndo encontre 0 minimo, enquanto um valor pequeno
torna o aprendizado lento. Um bom valor inicial para a taxa de aprendizado esta entre 0,01
e 0,1, e deve ser ajustado conforme se faz necessario.

Regularizacao é uma maneira de controlar o efeito de um ou mais pesos grandes, que
interfeririam na previsao geral. O parametro chamado de regularizacao é adicionado na
funcao de custo para equilibrar os pesos que podem impactar a previsédo, penalizando os
pesos grandes para reduzir seu impacto. A seguir estdo alguns algoritmos de otimizacao e
suas caracteristicas:

» Descida de Gradiente (Gradient Descent) Encontra pesos nos quais a fungao de
perda, ou funcado de custo, € minima. O algoritmo calcula a derivada e se move ao
longo da curva, com sentido de movimento decidido pelo gradiente negativo, e a taxa
de aprendizado determina o tamanho desse deslocamento a cada iteracao até que o
algoritmo encontre o custo minimo final.

» Descida de Gradiente Estocastica (SGD) A descida de gradiente calcula os gra-
dientes de todas as amostras de treinamento em cada iteracdo, o que pode ser
computacionalmente custoso e até mesmo pode nao ser viavel. A SGD contorna
esse problema ao calcular os gradientes de um pequeno subconjunto de um conjunto
do treinamento que pode caber facilmente na memdria através da randomizacgéao
do conjunto de dados de entrada para eliminar qualquer viés. E entéo calculado o
gradiente de uma unica amostra de dados selecionado aleatoriamente ou de um
pequeno segmento dos dados.

*+ SGD com Momentum A SGD com momentum € uma extensdo que controla a
oscilagao e acelera a convergéncia, especialmente em torno de minimos locais
profundos, visto que o momentum é um método que controla a oscilagcao através do
deslocamento do gradiente com operacdes distribuidas e paralelas que ajudam a
convergir o SGD mais rapidamente.

Segundo (GOODFELLOW; BENGIO; COURVILLE!, 2016), o Momentum tem como ob-
jetivo resolver a variancia no gradiente estocastico. Na Figura[5] as linhas de contorno
representam uma funcéo de perda quadratica. O caminho vermelho que corta as cur-
vas indica o caminho seguido pela regra de aprendizado do momentum ao minimizar
essa funcdo. Em cada etapa ao longo do caminho, € desenhada uma seta indicando a
direcao que o gradiente desceria naquele ponto. Podemos observar que uma fungéao
objetivo quadratica mal condicionada se assemelha a um vale ou desfiladeiro longo e
estreito com lados ingremes. O momentum atravessa corretamente o comprimento do
desfiladeiro, enquanto os passos do gradiente perdem tempo se movendo de um lado
para o outro ao longo do eixo estreito do desfiladeiro.

38

Figura 6 — Momentum utilizado para encontrar o minimo do erro

20)

10

()

—30 — '
—30 =20 —10 0 10 20

Fonte: (GOODFELLOW; BENGIO; COURVILLE, 2016)

« Adaptive Gradient Algorithm (Adagrad) O algoritmo Adagrad aborda o problema

de definir a taxa de aprendizado calculando um valor adequada para cada parame-
tro, atribuindo uma taxa maior para caracteristicas pouco frequentes e uma taxa de
aprendizado menor para caracteristicas mais frequentes, o que melhora o desem-
penho em problemas com gradientes esparsos, como em visdo computacional ou
processamento de linguagem natural (NLP).

Uma desvantagem € que a taxa de aprendizado adaptativa tende a ficar muito pequena
ao longo do tempo, 0 que aumenta o tempo de treinamento do modelo consideravel-
mente.

RMSProp O RMSProp apresenta uma melhoria em relagdo ao SGD com momentum,
pois restringe o0 movimento dos gradientes verticalmente, visto que, em uma curva
ingreme, um pequeno movimento na dire¢do horizontal causard um grande movimento
na direcao vertical. Assim, o movimento em ambas as direcées nao sera desigual,
convergindo ao ponto minimo mais rapidamente.

Adaptive Moment (Adam) Projetado especificamente para aprendizado profundo, é
um dos otimizadores mais utilizados, pois combina o0 SGD com momentum e o RMS-
Prop: atualiza os pesos da rede iterativamente com base nos dados de treinamento,
ao invés de adaptar as taxas com base na média do primeiro momento, como no
RMSProp, esse otimizador utiliza a média dos segundos momentos dos gradientes.

39

De forma geral, o algoritmo Adam é facil de implementar, eficiente computacional-
mente, com requisitos de memoria baixos, invariante a escalonagem diagonal dos
gradientes, adequado para problemas grandes em termos de dados, parametros, ob-
jetivos ndo estacionarios e problemas com gradientes ruidosos ou esparsos com para-
metros que geralmente exigem pouco ajuste. Fonte: https://arxiv.org/pdf/1412.6980.pdf

2.3.8 Retropropagacao

O treinamento de uma rede neural necessita dos seguintes elementos: dados ou ca-
racteristicas de entrada; uma rede neural multicamada; uma fungéo de erro. A rede atribui
pesos iniciais a cada caracteristica de entrada, e, através do algoritmo de otimizagéo, como
SGD ou Adam, a funcao de erro € otimizada para calcular o erro minimo e atualizar os
pesos.

E entdo estimado o erro para que os pesos sejam atualizados. No método de retropropa-
gacao, os gradientes dos pesos sao calculados primeiro na Ultima camada e os gradientes
da primeira camada sao calculados por ultimo. Os calculos parciais do gradiente sao reutili-
zados no célculo do gradiente para a camada anterior. Esse fluxo reverso dos dados de
erro resulta em uma computacao eficiente do gradiente em cada camada, os calculos de
gradientes ndo séao feitos independentemente em cada camada.

O erro da ultima camada é calculado primeiro pois mapeia as variaveis alvo do conjunto
de dados rotulado e, na camada oculta, ndo ha variaveis alvo.

2.3.9 Redes Neurais Convolucionais (CNNs)

Uma Rede Neural Convolucional (CNN ou ConvNet) € um tipo de rede neural profunda
projetada para reconhecer padrdes em dados que possuem uma forma de grade, como
imagens, e é particularmente eficaz em tarefas relacionadas a visdo computacional, como
reconhecimento e segmentacao de objetos, visto sua capacidade de aprender caracteris-
ticas hierarquicas e invariantes de translacao em dados de grade, problema comumente
encontrado em outras abordagens. Sdo compostas por camadas convolucionais, de pooling
(agrupamento) e totalmente conectadas. (VOULODIMOS, 2018)

« Camada Convolucional (Convolutional Layer): aplica filtros, chamados de kernels,
as partes da entrada, procurando padrdes locais. Essa operagdo de convolugao
permite que a rede aprenda caracteristicas especificas, como bordas, texturas ou
padrdes mais complexos.

« Camada de Pooling (Pooling Layer): reduz as dimensdes da entrada e torna a
representacdo mais compacta, € em sua operacao geralmente envolve a selecéo do
valor maximo, max pooling, ou a média, average pooling, em uma regiao.

40

« Camada Totalmente Conectada (Fully Connected Layer): ap6s as camadas convo-
lucionais e de pooling, a rede pode ter uma ou mais camadas totalmente conectadas,
que realizam a classificagao final com base nas caracteristicas aprendidas.

Figura 7 — Rede Neural Convolucional sobre imagem

Objeto
Classificador Categorias / posigbes

Convolugdes Agrupamento Convolugoes linear T

| .|
1 1

} at (x;, ;)

{ }at (xjo ¥)

Dado de entrada

52 Mapa de caracteristicas

|} at G)

e e

€1 Mapa de caracteristicas C3 Mapa de Caracteristicas

Modificado de Athanasios Voulodimos, 2018

2.3.10 Saidas dos modelos de deteccao de objetos

Os termos "bounding box,keypoints"e "masks"referem-se a diferentes aspectos da
representacao e identificacao de objetos em uma imagem que fazem parte das saidas e
resultados dos modelos de deteccao. Modelos mais complexos, e, consequentemente, mais
exigentes computacionalmente, produzem mais dessas saidas, e € necessaria a escolha de
uma rede que proporcione as informacdes pertinentes a aplicacao.

» Bounding Box (Caixa Delimitadora): caixa retangular que envolve ou delimita a area
onde o modelo infere que o objeto esta localizado em uma imagem, usado para indicar
a localizacao aproximada de um objeto especificando as coordenadas, geralmente
localizadas nos cantos, da caixa delimitadora.

» Keypoints (Pontos-chave): pontos especificos em um objeto ou regido de interesse
que tém um significado distintivo escolhidos por serem identificaveis e usados para
descrever as caracteristicas de uma area e localizar pontos anatomicamente significa-
tivos em objetos, por exemplo, cantos de um rosto. Sdo Uteis para estimar a pose ou
orientagdo de um objeto.

» Mascaras (Masks): imagens binarias que indicam a presencga ou auséncia de um
objeto em cada pixel, usadas para segmentar precisamente o que pertence a um
objeto especifico, util para quando € necessario distinguir a localizacdo dentro da
caixa delimitadora.

41

Figura 8 — Mascaras e caixas delimitadoras.
Fonte: (ANSARI, 2020)

Figura 9 — Pontos chave na imagem.

Fonte: (ANSARI, 2020)

2.4 Rastreamento de Objetos

ApoOs a etapa da deteccao de objetos, 0 modelo retorna as coordenadas dos pixels das
extremidades do retdngulo que cerca aquele elemento. Essas coordenadas sao suficientes
para orientar a posicao no caso em que ha apenas um item de interesse na imagem,;
entretanto, isso ndo se aplica ao caso em que ha mdultiplos exemplares da classe de
interesse em uma mesma imagem. Um dos campos da visdo computacional que foca sobre
esta questao é o rastreamento de objetos.

Duas técnicas tradicionais para realizar o rastreamento sédo: o deslocamento médio
(mean shift) e o fluxo 6ptico (optical flow).

2.4.1 Deslocamento Médio

O deslocamento médio funciona a partir de detectar o objeto de interesse e extrair
um padrao morfologico, suas coordenadas e seu tamanho através da anadlise de pixels
em posicoes chave. Esse padrao é entao procurado no préximo quadro em uma regiao,
conhecida como vizinhanga, ao redor de onde estava o centro do objeto no quadro anterior,

42

e a porgao de pixels nessa vizinhanga com a melhor correspondéncia recebe a atribuicao

da identidade do objeto. (ZHAO; WANG; HAN, 2013)

Entretanto, o método do deslocamento médio ndo € confiavel caso o objeto saia da

regiao da vizinhanga do objeto de interesse, entao, caso ele se mova muito rapidamente,
sera perdido. Além disso, também podemos destacar uma forte ineficiéncia em caso de
oclusdes.

Figura 10 — Resultado do algoritmo de deslocamento médio sobre carro

Fonte: Ming Zhao, 2013

2.4.2 Fluxo Optico

Outro método tradicional € o fluxo éptico. Ele difere do deslocamento médio pois leva
em consideracdo o movimento relativo dos objetos ao decorrer dos quadros anteriores. E
gerado um vetor de movimento entre o quadro presente e o quadro anterior, 0 que possibilita
0 uso desses vetores para seguir € até prever a trajetoria do objeto no proximo frame.
etal,,

Contudo, apesar da boa performance vista nos métodos tradicionais, eles sdo computa-
cionalmente complexos e sujeitos a ruidos, especialmente no caso do fluxo 6ptico, onde

43

detecgbes erradas do centro do objeto, seu tamanho e oclusdes em uma pequena parte
dos quadros produz erros de grandes magnitudes.

Figura 11 — Campos de fluxo de imagem previstos pelo algoritmo de fluxo 6ptico

4. 4
]

»
AN »

Fonte: Junjie Wu, 2012

2.4.3 Algoritmos de Predicao de Trajetoria

Para contornar a complexidade computacional e a sensibilidade a ruidos e oclusées,
diversos trabalhos pautados no rastreamento de objetos ja foram propostos.

Essencialmente, o objetivo desses algoritmos é, por meio de uma sucesséao de listas de
coordenadas que sao atualizadas a cada inferéncia, atribuir um nimero de identificacao
para cada conjunto de coordenadas a partir de comparagoes com as listas anteriores. Na
Tabela 1 hd o comparativo dos algoritmos mais conhecidos, com métricas coletadas através
do Local Metrics for Multi-Object Tracking (VALMADRE et al., 2021).

2.4.4 SORT

O algoritmo SORT, Simple Online Real-time Tracking, foi o escolhido devido a sua
simplicidade em termos de biblioteca, o que torna seu desempenho substancialmente
melhor quando utilizado em sistemas onde o poder computacional € um recurso limitado e
€ necessaria para a operagao o seu uso em tempo real. (BEWLEY et al., [2016)

» Deteccao

44

Algoritmo Vantagens Desvantagens

Tracktor++ Boa acuréacia

Track RCNN - 1.6 FPS
segmentacao
JDE 12 FPS, performance para Baixa resolucao, 1088x608
tempo real
SORT Boa velocidade e acuracia Sensivel a oclusdes e troca identidade

DeepSORT | acuracia e lida bem

Tabela 1 — Comparacao de algoritmos de rastreamento de objetos

3 FPS, ideal para execugdes que nao
precisam ser em tempo real
Boa acuréacia e com

de objetos com frequéncia

16 FPS, boa velocidade, Necessita de uma GPU para uso

em tempo real

com oclusodes

A deteccao é feita através da técnica de visdo computacional selecionada, e, quanto
menores 0s erros e maior a qualidade das coordenadas, melhor serdo os resultados
ao final

Estimativas

Nesta etapa, é utilizado o filtro Kalman. O filtro Kalman utiliza um modelo que atribui ao
objeto de interesse um modelo de movimento que se baseia em velocidade constante,
e, caso haja oclusao, ira atribuir estimativas de acordo com os dados de movimento
que foram previamente captados.

Quando é possivel visualizar o elemento de interesse, é fornecido ao modelo os dados
de movimentacao para alimenta-lo. No caso onde ha obstrugéo parcial, é utilizado
tanto o modelo quanto os dados captados pelo sensor para predizer a posi¢ao, e, caso
esteja totalmente oculto do sensor, os dados do modelo s&o utilizados na predicao.

Associacao de elementos

Cada conjunto de coordenadas correspondentes as delimitacées dos objetos detec-
tados no ultimo quadro tém, através do filtro Kalman, suas coordenadas previstas
comparadas com os objetos presentes detectados no quadro atual.

A matriz de custo de atribuicao é entao calculada como a distancia de interseccao
sobre unido (loU) entre as localizagdes previstas e as existentes. A atribuicao é
feita usando o algoritmo Hungaro, e, quanto mais sobreposicao entre as caixas
delimitadoras houver, maior o percentual de confianga inferido sobre aqueles dados
como pertencentes ao mesmo objeto.

Ciclo de vida da identidade dos elementos

A entrada e saida de objetos implica na necessidade de criar ou eliminar identidades
conforme necessario. Elementos que possuem uma sobreposi¢do com outras caixas

45

Figura 12 — Interseccao sobre Unido

Area de Intersecc¢do

loU =

Area de Unido

Modificado de (ROSEBROCK,)

delimitadoras menores que um valor de IOU minimo indicam a existéncia de um item
ainda néo rastreado, e é entdo criado um rastreador.

O rastreador tem, inicialmente, seu modelo de velocidade ajustado para zero com
um grande grau de incerteza, e passa por um periodo probatério onde o algoritmo
tenta associa-lo a deteccdes previamente existentes até que acumule evidéncias
suficientes para classifica-lo como sendo, de fato, um elemento inédito. Dessa forma,
sdo evitados falsos positivos.

Além disso, caso um rastrador ndo detecte seu correspondente objeto por uma deter-
minada quantidade de quadros, aquela identidade sera eliminada, e, caso apareca
novamente, sera atribuido a ele uma nova identificagao.

* SORT e DeepSORT
DeepSORT tem 45% menos trocas de identidade (WOJKE; BEWLEY; PAULUS, [2017),

entretanto, para utiliza-lo em tempo real € necessaria uma GPU. Apesar da placa

utilizada no projeto dispor de uma GPU, ela ndo possui capacidade computacional
suficiente para utilizar o DeepSORT e realizar inferéncias do modelo de detecc¢ao de
objetos em tempo real.

2.5 TensorFlow

TensorFlow é uma biblioteca de open-source para aprendizado de maquina e aprendi-
zado profundo desenvolvida pelo Google Brain baseado no Keras, uma API de alto nivel
para construcéo e treinamento de modelos de redes neurais (ABADI et al., 2015). Teve

46

inicio em 2011 e foi aberto ao publico em 2015. Projetado para simplificar e otimizar a
implementacao de modelos de aprendizado de maquina com arquiteturas versateis que
possibilitam a criagao e treinamento de redes neurais profundas para uma variedade de
aplicacdes, desde visdo computacional até processamento de linguagem natural.

O TensorFlow manipula dados na forma de tensores, que sao estruturas multidimensio-
nais semelhantes a arrays. Apesar de sua base de operag¢des de baixo nivel, ele fornece
APIs de alto nivel, como Keras, para a construgao rapida de modelos complexos, sendo
amplamente utilizado em uma variedade de campos e aplicagcdées, como:

» Aprendizado Profundo: treinamento de redes neurais profundas em aplicagdes
diversas.

+ Analise Preditiva: prever tendéncias e otimizar processos.

* Processamento de Linguagem Natural (NLP): analise de texto, traducédo automatica
e criagao de chatbots.

* Reconhecimento de Fala: sistemas que transcrevem voz para texto para diversos
usos, como a combinacao dessa funcionalidade com outros algoritmos de controle.

» Visao Computacional: segmentacao de imagem, reconhecimento e deteccéo de
objetos, que sera o foco desta tese.

O Keras foi inicialmente desenvolvido como uma biblioteca independente, mas, a partir
do TensorFlow 2.0, foi incorporado como sua API oficial. Com intuito de fornecer uma
interface intuitiva para a construcédo de redes neurais, foi projetado para ser modular, o
que facilita a modificagdo e implementacao de diferentes arquiteturas de rede. Dessa
forma, o TensorFlow serve como uma aplicacdo de alto nivel para definigdo, treinamento
e avaliacao de modelos e permite a facil transicao de protétipos para implementagcées em
larga escala, pois suas configuragdes sao flexiveis para diferentes requisitos de sistemas,
com capacidade de operar em CPUs, GPUs e TPUs proporciona versatilidade na escolha
de hardware de acordo com a aplicagao e recursos disponiveis. H4 também uma versao da
biblioteca menos computacionalmente exigente, o TensorFlow Lite.

2.6 ROS

O ROS ¢é uma plataforma de software open-source projetada para facilitar o desenvolvi-
mento de robds inicialmente desenvolvido pela Willow Garage, uma empresa de pesquisa
em robdtica, agora € mantido pela Open Robotics, organizagcao sem fins lucrativos. Seu
cédigo fonte é aberto e permite que desenvolvedores contribuam, adaptem e aprimorem a
plataforma, sendo ela compativel com diversos sistemas operacionais, incluindo Linux, com

47

Figura 13 — Diagrama conceitual do funcionamento do TensorFlow
Treinamento Implementacdo

Leitura e pré-processamento dos dados
tf.data, Colunas de caracteristicas

TensorFlow
Hub
\ 4 A

Estimadores
tf.keras pré-fabricados

TensorFlow Serving
Cloud, on-prem

TensorFlow Lite
Android, i0S, Raspberry Pi

ModeloSalvo

TensorFlow.js
Browser and Node Server

[Estratégia de distribuigdo
7

Outras linguagens vinculadas

C, Java, Go, C#, Rust, R, ...

Modificado de (TENSORFLOW...},)

foco na versao Ubuntu, macOS e algumas implementa¢des para Windows, o que aumenta
a acessibilidade do ROS.

A plataforma promove o compartilhamento de c6digos entre desenvolvedores através
de pacotes de software de diferentes projetos e equipes, estratégia que acelera o desenvol-
vimento ao eliminar a necessidade de recriar solu¢des para problemas que aparecem de
forma frequente no desenvolvimento de projetos.

Ademais, ha o fornecimento de uma camada de abstragdo que separa o software do
hardware subjacente, possibilitando a escrita de cddigos para tarefas especificas sem
conflitos com as especificidades de hardware. Nesse sentido, ha também a facilitacao da
comunicacao entre diferentes componentes do sistema, permitindo que médulos distintos
troquem informagdes de maneira eficiente e sem problemas, o que sera de utilidade para
que o algoritmo desenvolvido nesta tese possa ser facilmente integrado ao sistema alvo,
pois sua arquitetura modular facilita a adaptacéo a diferentes hardwares.

A plataforma possui diferentes funcionalidades para comunicacéo e integracdo de
algoritmos que compdem o software do robé que serao Uteis para o projeto:

* Nos (nodes): processos executaveis individuais que realizam tarefas especificas
diversas, desde controlar um sensor até coordenar todo o0 comportamento do sistema.
Os no6s se comunicam por meio de topicos ou servigos, permitindo uma arquitetura
distribuida.

» Topicos (Topics): canais de comunicagcdo assincrona através dos quais 0s nés
trocam mensagens. Nos podem publicar ou assinar no topico para, respectivamente,

48

enviar ou receber as mensagens e seus dados.

* Mensagens (Messages): definem o formato das informagdes e varidveis transmitidas
entre nés. Cada topico tem um tipo de mensagem, e, consequentemente, um tipo
de dado, associado que especifica como as informag¢des devem ser organizadas e
interpretadas.

» Servicos (Services): permitem comunicagao sincrona, onde um node solicita a
execucao de uma fungao a outro né, como solicitar dados de sensores ou enviar
comandos de controle.

Figura 14 — ROS: Mensagens entre nés Publisher e Subscriber

Publicagao Inscrigao
Topico
Msg Msg
N N

Modificado de (YAMASHINA et al., 2015)

49

3 DESENVOLVIMENTO

Com a fundamentacéo tedrica a respeito das ferramentas computacionais, bibliotecas e
plataformas utilizadas, o presente capitulo tem o objetivo de expor as etapas do procedi-
mento de desenvolvimento do algoritmo de visao, funcionalidades, limitacées encontradas e
aspectos da l6gica por tras do cédigo elaborado.

3.1 Hardware utilizado

3.1.1 Maquina local

Apesar da aplicacao destino do algoritmo ser em um sistema embarcado, muitas tarefas
de desenvolvimento e treino podem ser realizadas em outra maquina que dispde de maiores
recursos de processamento. Para o desenvolvimento da tese, foi usado um notebook com
as seguintes especificacoes:

Nome do Sistema Operacional: Microsoft Windows 11 Home Single Language

Modelo do sistema: Nitro AN515-57

* Processador: 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz, 2304 Mhz, 8
Nucleo(s)

GPU: NVIDIA GeForce RTX 3050 Laptop GPU

E importante levar em consideracéo o sistema operacional e a GPU, visto que a maioria
das bibliotecas para desenvolvimento de aplicagdes em visdo computacional e os principais
usos de ROS séao projetados para uso em Linux. Portanto sdo necessarias adaptacdes para
uso do sistema operacional disponivel, Windows 11.

3.1.2 Raspberry Pi 4B

A Raspberry Pi 4B, da Raspberry Pi Foundation (RASPBERRY Pl FOUNDATION,), é
uma placa computacional compacta com diversas aplicagdes que visam a portabilidade
e acessibilidade, como em projetos de Internet das Coisas (loT), servidores domésticos,
aplicacdes industriais leves e robds. Algumas especificacdes da placa utilizada no projeto:

+ Sistema operacional: Raspberry Pi OS with desktop, October 10th 2023

O sistema operacional oficial da Raspberry € o Raspberry Pi OS, entretanto, é possivel
instalar outros, visto que ele é alojado no cartdo SD que deve ser inserido na placa.

» Debian version: 12 (bookworm)

» Processador: quad-core ARM Cortex-A72, 64 bits

50

- RAM: 4GB

A Raspberry Pi, através dos sistemas operacionais baseados em Linux, € compativel
com Python, TensorFlow e ROS, o que permite que ela implemente projetos envolvendo
redes neurais, visdo computacional e outras aplicacées de ML, e sua compatibilidade com
ROS possibilita seu uso como o cérebro de um robd, integrando sensores, motores e
algoritmos em um ecossistema coeso.

Para captar as imagens e fornecé-las ao algoritmo foi obtida uma das cameras oficiais
da Raspberry, a camera para Raspberry Pi Rev 1.3.

Figura 15 — Raspberry Pi 4B

Fonte: Autor

3.2 Treinamento de modelo

O treinamento do modelo de aprendizado profundo é um processo computacionalmente
custoso e normalmente € necessario dias e, em alguns casos, até mesmo semanas, para
que seja concluido e obtenha resultados satisfatérios. Entretanto, é possivel utilizar modelos
existentes com pesos bem definidos para que serviam como ponto de partida do treinamento
de uma rede. O TensorFlow, em seu repositorio oficial, disponibiliza alguns desses modelos.

O repositorio contém modelos treinados para realizar a inferéncia de diversas classes.
Ainda assim, em termos de projeto, o intuito nesta tese de passar pelo processo de treina-
mento é para que, caso o robd tenha o objetivo de seguir um item que néo esta presente nos
modelos pré-treinados disponiveis publicamente, seja possivel adicionar novos elementos
a partir do treino de uma rede. Mais detalhes sobre treinamento de modelos podem ser
encontrados no Apéndice C.

E pertinente a ressalva de que objetos que possuem caracteristicas geométricas bem
definidas e que pouco variam com mudancas no angulo de captura e iluminacao sao expres-
sivamente mais simples para o aprendizado. Para testar um cenario de maior complexidade,

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

51

0 objetivo do treinamento da rede sera a deteccéo de pombos, visto que a aquisi¢cao de
imagens deles em ambiente urbano € simples e eles tendem a variar em cor e forma de
acordo com diferentes diregbes de observagéao.

Figura 16 — Exemplo de imagem utilizada para realizar o treinamento da rede

¥ 1abellmg C:/Users/lyuji/Pictures/TCC/imagem do WhatsApp de 2023-12-09 a(s) 01.35.27_88915a5bjpg [1/ 1

Box Labels
(At Label
O dificut

() Use default label

;viviv

g _ 2
- 3

IR

&
£
5

¥

PascalvoC

File List -]

Fonte: Autor

3.2.1 Dataset

Para que a rede seja treinada sdo necessarias nao apenas as imagens, mas também a
indicacdo dos objetos de interesse presentes, suas coordenadas e categorias dos elementos.
Além disso, é necessaéria a divisdo entre imagens para treinamento e para validagao, pois
se todos os dados fossem usados no treinamento ocorreria o vazamento de informagdes
e 0 modelo ndo seria capaz de verificar sua capacidade de realizar inferéncias, e, por
consequéncia, nao seria devidamente otimizado. Uma pratica recomendada € coletar uma
quantidade acima de 200 imagens e separar em torno de 70% das imagens para treino e
30% para validagao.

Antes do treino, é necessario definir o ground truth, parte da imagem que contém o
objeto de interesse, e salvar os dados que contém as informagdes das multiplas imagens.
Isso é feito através da biblioteca labelimg.

» Treinamento O conjunto de treino é usado para treinar o modelo, ajustando seus
pesos e parametros iterativamente. E importante ndo deixar o treinamento acontecer
por mais tempo do que o necessario, pois, nesse caso, ha o overfitting, que € quando
a rede aprende a identificar as imagens utilizadas ao invés de aprender a generalizar.

52

 Validacao As imagens de validagao fornecem uma avaliagdo imparcial do desempe-
nho do modelo com diferentes configuragdes e sdo usadas como uma estimativa do
desempenho futuro durante a execugao dele. Apos cada iteragao de treinamento o
desempenho no conjunto de validagao é verificado e o0 modelo é ajustado.

3.2.2 Uso de modelos pré-treinados

Treinar um modelo partindo de um ja previamente treinado € um processo chamado de
"transferéncia de aprendizado"e € uma forma de economizar recursos computacionais e,
consequentemente, tempo. Modelos pré-treinados, especialmente em conjuntos de dados
massivos, ja aprenderam muitas caracteristicas uteis e, quando treinado previamente sobre
grandes conjuntos de dados, como o EfficientDet treinado sobre o MS COCO utilizado (LIN
et al., 2014), tendem a aprender caracteristicas gerais e Uteis.

Além disso, partir dos pesos ja estabelecidos faz com que o modelo possa ser ajustado
incrementalmente a fim de cumprir tarefas especificas e adaptar o modelo para a nova
tarefa sem perder completamente o conhecimento prévio. Nao so isso, hd também o efeito
de regularizagéo, especialmente quando os dados de treino sdo limitados, ajuda a evitar o
overfitting e melhora a capacidade de generalizagao do modelo.

3.2.3 TensorBoard

O TensorBoard é uma ferramenta de visualizagdo de métricas do TensorFlow, uma das
suas principais utilidades é monitorar métricas importantes durante o treinamento de um
modelo, como a funcao de perda. Nela, também é possivel verificar quais imagens estao
sendo analisadas e sendo utilizadas para treinar o modelo no momento.

Observar o grafico da funcdo de perda é uma boa ideia para que se tenha uma boa
ideia de quando é o momento adequado para se parar o treino e evitar o overfitting. Apés
alguns dias, o grafico tende a convergir para um valor médio e nao variar expressivamente.
No caso, o treinamento da rede ocorreu durante cinco dias.

Apés realizar o treinamento da rede e exportar o modelo é possivel executar inferéncias
através dele. No capitulo 4 ha o resultado da rede de teste treinada para inferéncia de
pombos urbanos. Entretanto, a fim de aumentar a versatilidade e variedade de objetos para
deteccdao, sera utilizado um modelo previamente treinado da biblioteca do TensorFlow que
realiza inferéncias sobre o conjunto de dados MS COCO.

3.3 Modelos e diferencas

Entre diversos aspectos, os modelos de deteccao de objetos diferem em aspectos como
a arquitetura, ou seja, numero de camadas e de perceptrons dentro de cada uma delas,
método de geragao de regides de interesse propostas, fun¢do de ativagao, funcao de perda,

53

Figura 17 — Tensorboard - Grafico da fungao de perda

I

o A 1004 g
Fonte: Autor

eficiéncia, precisao e velocidade. Na Tabela X, encontram-se alguns modelos e parametros

comparativos. (KRIZHEVSKY; SUTSKEVER; HINTON, [2012)

Devido a capacidade computacional da placa de computag¢ao que sera utilizada, o cédigo

sera desenvolvido sobre um dos modelos de menor exigéncia de processamento: 0 SSD
MobileNet v2 320x320. Ainda assim, o algoritmo serd desenvolvido de forma a permitir
facilmente a troca de modelo, caso se faga necessaria maior confiabilidade das previsoes.

3.4 Algoritmo de Visao

Com o intuito de elaborar um co6digo com a maior versatilidade de usos possiveis e
que se adapte a diferentes necessidades e interesses, o algoritmo desenvolvido foi feito
de forma a facilitar a implementagao de diferentes modelos, configurar parametros para
operacao e modos de funcionamento. Além disso, a placa de computagao Raspberry Pi 4B
possui recursos computacionais relativamente escassos e, caso outros c6digos necessarios

54

Tabela 2 — Comparacao de performance de modelos de deteccao de objetos

Algoritmo Treinado Velocidade do Quadros por | Aplicavel em
Teste .
Detector de sobre o mAP (Segundos Segundo videos em
Objeto Dataset: g (FPS) tempo real
por Imagem)
R-CNN COCO 2007 | 66,0% | 32,84 0,03 Néo
COCO 2007 o ~
Fast R-CNN and 2012 66,9% | 1,72 0,60 Nao
Faster R-CNN | COCO 2007 o «
(VGG-16) and 2012 73,2% | 0,11 9,1 Nao
Faster R-CNN | COCO 2007 o ~
(RestNet-101) | and 2012 | 838% | 2,24 0.4 Nao
COCO 2007 o ,
SSD300 and 2012 74,3% | 0,02 46 Sim
COCO 2007 o ,
SSD512 and 2012 76,8% | 0,05 19 Sim
COCO 2007 o ,
YOLO and 2012 73,4% | 0,02 46 Sim
COCO 2007 o ,
YOLOv2 and 2012 78,6% | 0,03 40 Sim
YOLOv3 COCO 2007 o ,
608x608 and 2012 | 76:0% | 0,029 34 Sim
YOLOv3 COCO 2007 o ,
416x416 and 2012 | /9% | 0,051 19 Sim

Fonte: (ANSARI, 2020)

para o funcionamento do rob6 necessitem de mais processamento, é possivel ajustar o
quanto o algoritmo de visdo esta consumindo através da troca do modelo de inferéncia ou
mesmo adicionando um atraso entre cada execucao.

3.4.1 Ambiente de Desenvolvimento

Uma das caracteristicas do TensorFlow e suas aplicagdes € que suas fungdes sao
particularmente sensiveis as versdes de outras bibliotecas utilizadas, como, por exemplo,
Numpy, SciPy, OpenCYV, entre outros. O uso de um recurso de algum desses pacotes em
versao mais ou menos atualizada em relacédo ao TensorFlow facilmente causa conflitos
de versoes, e € necessaria a alteragdo da versao, seja para mais recente ou mais antigo.
No Apéndice D se encontram as versdes instaladas que utilizaram todos os recursos
empregados no codigo desenvolvido sem conflitos de versdes.

O Conda, desenvolvido pela Anaconda Inc. (ANACONDA.. .} [2020), foi utilizado para
gerenciar o ambiente virtual em que os pacotes estao instalados. Um dos beneficios do
uso do gerenciador de ambientes e pacotes sdo os servicos de compatibilidade entre
versdes e o0 uso de diferentes distribuicées do Python em cada ambiente, pois o TensorFlow

55

e bibliotecas adjacentes necessitam de variantes especificas que estdo disponiveis em
apenas algumas versdes do interpretador.

3.4.2 Deteccao de Objeto

O cédigo foi configurado para utilizar, na maquina com o sistema operacional Windows
11, a webcam. A biblioteca do OpenCV permite o uso de cameras USB através da funcao
empregada, mas nao possui suporte para dispositivos fora dessa categoria, e, portanto, sao
necessarias adaptacdes para o uso de outros tipos de sensores de imagens.

Foi reservada uma linha para selecao do modelo, que pode ser facilmente substituido por
outros do repositério oficial do TensorFlow ou por modelos customizados. O procedimento de
download e uso de diferentes modelos se encontram nos Apéndices B e C, respectivamente.
Foi escolhido inicialmente o detector de objetos SSD MobileNet v2 320x320.

Caminho ate o modelo
detection_model = load_model(' ssd_mobilenet_v2_320x320
,_cocol17_tpu-8\\saved_model ")

A inferéncia dos objetos € realizada sobre cada quadro do video em tempo real e trata
cada captura como uma imagem isolada. O conjunto de imagens sobre 0 qual o modelo
foi treinado, MS COCO, possui 81 classes, e durante a inferéncia todas elas sao indicadas
atraves das caixas delimitadoras.

E interessante ressaltar que o modelo gera diversas proposicées de objetos com dife-
rentes probabilidades associadas a cada um deles. Caso a probabilidade associada seja
baixa, o objeto nao é exibido, pois entende-se que o padrao encontrado nao é assertivo o
suficiente para ser considerado, de fato, um elemento da classe.

Ao final de cada inferéncia, temos uma saida contendo todos os objetos propostos,
probabilidades e coordenadas dos quatro cantos das caixas delimitadoras em uma variavel
do tipo dicionario chamada output_dict. Entretanto, como descrito no Capitulo 2, esse
dicionario nao nos fornece uma forma de diferenciar e acompanhar dois ou mais objetos da
mesma classe, e isso deve ser feito através de um algoritmo de rastreamento.

Run inference
output_dict = model(input_tensor)

3.4.3 Rastreamento de Objeto

O algoritmo SORT possui caracteristicas que o tornam apropriado para aplicagoes
que demandam velocidade, simplicidade, detec¢cao de multiplos objetos e capacidade de
execugao em tempo real, mesmo em ambientes computacionais limitados, visto que sua

56

- kit 67%
y 100 \3
200
fte: 56%
\i v
300 —
Kile: 52%
- B0%
—]
|] 3 person: 74%
500 - wvlw' - M N
600 pperson 59% —
4 1 person: 69%
700 -
800 : h q

T T T T T
0 200 400 600 800 1000 1200

(a) Imagem original do repositério do TensorFlow (b) Inferéncia do modelo SSD MobileNet v2

Figura 18 — Inferéncia do modelo sobre imagem

abordagem baseada em equacgoes e bibliotecas de opera¢cdes matematicas base permitem
uma resposta rapida a mudangas nas condigdes do ambiente, projetado para aplicagoes
em que € necessario o rastreamento de objetos em tempo real, fornecendo resultados com
baixas laténcias sem sobrecarregar a capacidade do hardware disponivel.

Algumas bibliotecas que compde o SORT incluem:

* numpy

scikit-image==0.17.2

filterpy==1.4.5

lap==0.4.0

Para utilizar o SORT ¢é necessario fornecer ao objeto criado para realizar o rastreamento
a lista de coordenadas das caixas delimitadoras encontradas na imagem, que se encon-
tram apds a inferéncia no output_dict. O rastreador ir4 retornar as mesmas coordenadas
associadas a um numero ID, e, através dele, sera possivel fazer o acompanhamento dos
objetos, visto que cada um esta associado a um objeto distinto.

Entretanto, em caso de oclusdes ou desaparecimento e reaparecimento de um obijeto,
um novo ID serd associado a ele.

Instancia de SORT
mot_tracker = Sort()

(Codigo que separa as coordenadas de interesse)

Envia a lista ao algoritmo de tracking
track_bbs_ids = mot_tracker.update(detections)

57

3.4.3.1 Critérios

Um importante aspecto do objetivo do robd de seguir um objeto se beneficia de forma
expressiva em termos de versatilidade através do uso de redes neurais. Através dos objetos
existentes no MS COCO, é possivel implementar o critério com base nas classes presentes.
Por exemplo, aqui faremos com que o algoritmo observe os elementos da classe "person”.

Envia a lista de objetos sob o algoritmo de tracking
para o algoritmo que seleciona um alvo com o modo de
operacao 2

target = target_tracking(tracked_objects, ’'person’, 2)

Entretanto, caso haja mais de um elemento desta classe, apenas a categoria nao
sera o suficiente para determinar qual elemento presente seré o alvo, e em decorréncia
do comportamento de troca e novos IDs o rob6 ndo conseguira determinar um namero
especifico de forma auténoma.

Para contornar esse problema, no cédigo foram configurados trés modos de operagao
que podem ser trocados que levam em considerac¢ao os IDs da classe alvo:

» Modo 0 O Modo 0 tornara como alvo o primeiro objeto da classe de interesse que for
detectado, ou seja, o com o menor ID presente.

if mode ==
target_id = min(target_labeled[:,0])
for x, (id, x1, y1, x2, y2, score)
in enumerate(target_labeled):
if id == target_id:
return(id, x1, y1, x2, y2, score)

* Modo 1 O Modo 1 ira definir como alvo o ultimo objeto da classe a entrar na visao,
ou seja, o com o maior ID. Vale a ressalva de que, caso haja uma troca de ID de um
objeto ja dentro da visao, ele trocara para esse objeto existente previamente mas que
teve seu numero de identificagdo renovado.

elif mode == 1:
target_id = max(target_labeled[:,0])
for x, (id, x1, y1, x2, y2, score) in
enumerate(target_labeled):
if id == target_id:
return(id, x1, y1, x2, y2, score)

58

return 0

» Modo 2 O Modo 2 tornara o objeto com a maior probabilidade associada de ser da
classe de interesse como alvo.

elif mode == 2:
max_labeled_score = max(target_labeled[:,5])
for x, (id, x1, y1, x2, y2, score)
in enumerate(target_labeled):
target_id = id if float(score) ==
float (max_labeled_score) else None
return(id, x1, y1, x2, y2, score)

3.4.3.2 Coordenadas extraidas

Apoés a definicdo do objeto alvo, a saida da funcao serdo as coordenadas e probabilidade
da inferéncia, e, a partir dessas coordenadas separadas das demais, o robd tera um meio
de se localizar em relagédo ao alvo.

A forma proposta para realizar a tarefa de seguir o objeto de acordo com os critérios
definidos é, a partir das coordenadas alvo e do alinhamento da frente do robé com a
camera, realizar a subtracdo das coordenadas de centro da caixa delimitadora do elemento
de interesse das coordenadas de centro da imagem. Dessa forma, sera possivel saber o
quanto sera necessario ajustar a trajetéria para que consiga chegar até o objetivo.

[Centro Horizontal do Objeto] = [Coordenada X menor + Coordenada X maior] / 2

[Centro Vertical do Objeto] = [Coordenada Y menor + Coordenada Y maior] / 2

[Ajuste Horizontal da Trajetoria] = ([Dimensao Horizontal da Imagem]/ 2) - [Centro
Horizontal do Objeto]

[Ajuste Vertical da Trajetoria] = ([Dimensao Vertical da Imagem]/ 2) - [Centro Vertical
do Objeto]

3.4.4 Predicao de trajetoria

Uma funcionalidade otimizadora do movimento do dispositivo consiste em néao levar
em consideracao apenas a posicao do objeto, como também sua velocidade e, entéo,
adaptar o rumo para mirar na posigao futura prevista. Uma das alternativas para cumprir
esse proposito € um dos algoritmos que compdéem o SORT, o filtro Kalman, entretanto, sao
necessarias adaptacdes para utiliza-lo sobre um alvo especifico de forma a resultar na
previsdo em um intervalo desejado.

Figura 19 — Ajuste de trajetéria através das coordenadas de centro e do objeto

Caixa delimitadora

Elemento

de
interesse

&

distanciay

distanciax ¢

PR 1
Centro da
imagem

Fonte: Autor

Elemento Elemento
de

interesse

de
interesse

(a) Algoritmo que leva em (b) Algoritmo que utiliza as coordenadas
consideragao a posi¢ao atual previstas

59

Figura 20 — Uso do filtro Kalman para otimizagao do ajuste de trajetéria e perseguicao do

objeto alvo em movimento.
Fonte: Autor

60

3.4.4.1 Filtro Kalman

De forma semelhante ao algoritmo do SORT, para utilizar o filtro Kalman e realizar
predicdes de trajetoria também € necessério fornecer uma lista de coordenadas. Entre-
tanto, neste caso os numeros fornecidos devem pertencer apenas ao objeto de interesse
determinado anteriormente.

Cada conjunto de posi¢oes informadas ao filtro devem estar temporalmente espagcadas
de acordo com o quao distante do quadro presente seja a préxima previsao. Em outras
palavras, caso nosso interesse seja saber a estimativa de posicdo do objeto daqui a 5
segundos, as coordenadas da lista devem ser coletadas e enviadas seguindo esse intervalo
de tempo.

3.4.4.2 Calculo de FPS

A biblioteca do OpenCV nao possui, de forma nativa, uma forma de verificar os quadros
por segundo de um video, o que torna entdo necessaria a implementagdo dessa fungéo a
partir da andlise da velocidade de execugéao do algoritmo.

Isso é feito através da criacdo de marcos temporais no inicio e fim da execugéao, e, com
a informacao de quanto tempo um lago demora para ser concluido, é possivel calcular
quantos quadros por segundo o video esta sendo executado.

Calculo do FPS, trecho executado

a cada inicio do loop do algoritmo

Variavel para calcular o FPS

FPS_ frame count = 0

Quantidade de frames a serem contabilizados no calculo
FPS_frame_amount = 5

FPS = 0

if FPS_frame_count ==
FPS_start = time.time ()
FPS frame count = 0
FPS frame_count += 1
elif FPS_frame_count < FPS_frame_amount:
FPS frame count += 1
else:
FPS_end = time.time ()
FPS = FPS_frame_amount // (FPS_end - FPS_start)
FPS frame count = 0

61

A partir do FPS do video, temos uma forma de associar o nimero de quadros, ou seja,
de vezes que o laco de repeticao foi executado, com o intervalo de tempo decorrido. Dessa
forma, o algoritmo sabera em que momentos fornecer as coordenadas ao filtro Kalman para
que a previsdo seja feita no espagcamento temporal desejado.

Variavel que controla o inicio do Filtro Kalman
Kalman_start = False

Intervalo de tempo entre 0s registros e as previsoes
Kalman_time = 0.5

Variavel que conta os frames dentro desse intervalo de tempo
Kalman_frame _count = 0

Quantidade de frames correspondente ao intervalo

de tempo entre as previsoes

do Filtro Kalman

Kalman_frame_amount = int (FPS=Kalman_time)

if Kalman_frame count >= Kalman frame_amount:
if Kalman_start is False:

Kalman_start = True

Kalman_Filter = KalmanBoxTracker ([target_register[0,0],

target_register[0,1],

target_register[0,2],

target_register[0,3]])
target_register = np.empty((0,4))

Kalman_frame_count = 0

else:

Kalman_Filter.update ([target_register[0,0],
target_register[0,1],
target_register[0,2],
target_register[0,3]])

print (Kalman_Filter. predict ())

target_register = np.empty((0,4))

Kalman_frame_count = 0

else:
Kalman_frame_count += 1

62

3.4.4.3 Consideracoes

Este método para prever e se adequar ao movimento aparente do objeto deve levar em
consideragéao o movimento relativo do objeto em relagéo a camera, pois, caso o objeto esteja
parado e o robd ajuste sua trajetdria para que ele se encontre no centro, € possivel que
acabe sendo percebido um movimento relativo mesmo que o elemento esteja em repouso.

3.5 Implementacao do ROS

A plataforma de desenvolvimento do ROS possui diversas funcionalidades, como si-
mulagdo, modularizagdo de funcionalidades e integracdo de algoritmos. Neste projeto,
a funcionalidade de maior interesse é a comunicacao e troca de informacdes entre os
diferentes codigos.

Um dos aspectos que torna os projetos de ROS altamente intercambiaveis é que ha
uma organizacao de pastas e arquivos padronizados. Ha diversos beneficios em utilizar o
ambiente ROS ao invés de colocar todas as funcionalidades dentro de um mesmo arquivo,
como, por exemplo, maior facilidade na hora de editar fun¢gées e mesmo integrar novas ao
sistema.

Figura 21 — Organizagao de um workspace (espacgo de trabalho) ROS

Espago de wocraktskpiance
trabalho] | ot]

build J
n = n
catkin
packagel I ‘ packageZJ

—

CMakeLists.txtJ package.xml | | scripts mng srv | |include || src launchJ
F 7 o

| [| I I \

*opYJ *.shJ *.mng *.SNJ *.hJ *.cppJ *.launchJ

Modificado de (ANWAR, 2021)

3.5.1 Publisher Node

Para que o algoritmo de visao atue em conjunto com outros cédigos ele devera disponi-
bilizar os dados de interesse, as coordenadas, para que outros executaveis sejam capazes
de visualiza-los. Isso é possivel ser feito implementando a funcionalidade de publicagdo em
um tépico. O caodigo feito, dentro de um ambiente ROS, € chamado de node, e se torna um
publisher node que envia mensagens, estruturas de dados organizados de forma especifica,
a um topico.

63

Figura 22 — Pastas do projeto

“ PROJETO_PEIXE_ WS DEOL&
> build
> devel
v src
v algoritmos_visao

> models

> msg

> output
“ scripts
> _pycache__
sort

label_map_util.py

run_inference_webcam.py

run_inference.py

= .catkin_workspace

Fonte: Autor

Outros cédigos s@o capazes de se inscrever e ler mensagens publicadas no topico,
sendo entdo chamados de subscriber node.

def publish_object_data(target_class, x, y, x_sort, y_sort):
Cria objeto publisher
#(Nome do topico, tipo da mensagem, quantas
mensagens da para adicionar na fila)
pub_coord = rospy.Publisher(’obj_coordinates’,
Obj_coordinates, queue_size=10)
Inicia o node
#(Nome do node, anonymous - cria um nome caso
haja mais de um node publicando)
rospy.init_node(’'coord_publisher’, anonymous=True)
Unidade em Hz
rate = rospy.Rate(1)
Aviso que o node foi iniciado
rospy.loginfo ("Publisher_iniciado
B _e_publicando_coordenadas_do_alvo")
while not rospy.is_shutdown ():
msg_obj_coord = Obj_coordinates ()
Insira as informacoes

64

criadas no Obj coordinates.msg
msg_obj_coord.target_class = target_class
msg_obj _coord.x = X

msg_obj_coord.y =y

msg_obj_coord. x_predicted X_sort

msg_obj coord.y_predicted

y_sort
pub_coord. publish (msg_obj _coord)
rate .sleep ()

3.5.2 Message

A mensagem, message, contém a informacgao de quais tipos de dado e sequéncia que
devem ser enviados ao topico. Para as coordenadas, é interessante que sejam no formato
float, para caso se deseje trabalhar com coordenadas normalizadas, ou int, no caso das
coordenadas baseadas nas dimensdes da imagem da camera em pixels.

string target_class
float32 x
float32 y
float32 x_predicted
float32 y_ predicted

3.5.3 Topic

O topico é onde as mensagens com a formatacéo especifica sdo publicados. No projeto
da tese, € interessante que o tépico contenha as coordenadas do objeto alvo.
3.5.4 Subscriber

O node que se torna subscriber 1€ informagdes publicadas no tépico. Uma possivel
abordagem é fazer com que o algoritmo responsavel pela dinamica do robé seja inscrito no
topico em que as coordenadas séo publicadas para realizar o controle dos movimentos.

65
4 RESULTADOS

4.1 Treinamento do modelo

Foi feito um primeiro processo de treinamento do modelo, inicialmente, ao longo de nove
horas, no entanto, os resultados obtidos nao foram satisfatorios, como pode ser observado
na Figura 23]

Diante disso, um segundo teste foi conduzido e 0 modelo foi treinado durante cinco dias
de treino, resultando em um desempenho mais eficiente que pode ser verificado na Figura
contendo multiplos pombos. E importante notar que devido ao treinamento realizado
especificamente com pombos cinzas o modelo nao foi capaz de detectar pombos brancos.

Esse aspecto evidencia a necessidade de treinar redes personalizadas para objetos
de interesse especificos. Assim, se 0 objetivo € ter um modelo que siga objetos nao
inclusos nos modelos pré-treinados, é possivel treinar novas redes neurais com esses
objetos e ajusta-las as necessidades especificas. Nesse contexto, o treinamento de um
modelo personalizado se mostrou uma solugao satisfatéria para aumentar a versatilidade
do algoritmo desenvolvido.

Figura 23 — Resultado ap6s nove horas de treino

o —
50
100 & _,
150 -
200 -

2501

T T
0 50 100 150

Fonte: Autor

4.2 Deteccao e Rastreamento de Objetos

A rede pré-treinada utilizada, SSD MobileNet v2 320x320, empregada durante o de-
senvolvimento, apresentava oscilagdes significativas nas dimensdes das caixas delimi-
tadoras. Essa instabilidade é associada a velocidade do modelo que € priorizada so-

66

Figura 24 — Resultado apds cinco dias de treino

100
150
200
250
300

350

0 100 200 300 400 500

Fonte: Autor

bre a precisdo e acuracia. Contudo, ao testar o cdédigo com um modelo mais robusto,
faster_rcnn_resnet50_v1_640x640_coco17_tpu-8, observou-se uma melhoria consideravel
na consisténcia das caixas delimitadoras, que passaram a ter uma maior estabilidade e
delimitagdes mais precisas.

Ainda assim, a integracdo do algoritmo SORT ao modelo proporcionou resultados satisfa-
torios no rastreamento de objetos. Especificamente, o0 modo 2 do algoritmo demonstrou ser
apropriado para uso em cenarios com apenas um objeto da classe, minimizando confusdes
temporarias com elementos do ambiente, geralmente associados a probabilidades de cor-
respondéncia baixas, garantindo que o objeto real permanega como foco do rastreamento.

Os modos 0 e 1 também forneceram bons resultados e se mostraram adequados para
quando ha mais de um elemento da classe de interesse em cena, sendo a priorizagao do
ultimo elemento a aparecer mais adequada devido a natureza do SORT de frequentemente
trocar IDs. Além disso, nesse cenario, eles sdo mais adequados do que o modo 2, visto que
as probabilidades associadas tendem a variar consideravelmente ao longo das inferéncias
devido a variagbes no angulo de observagao e iluminagao.

O filtro de Kalman aplicado para a predicao de trajetéria demonstrou sucesso na tarefa
de acompanhar o alvo durante os testes realizados na webcam. No entanto, é importante
salientar que ainda nao foi avaliado o desempenho das predi¢ées e 0 comportamento do
movimento diante de deslocamentos relativos da camera, que ocorrerdo quando ela estiver
acoplada ao dispositivo robético. Essa condicao pode levar a percep¢ao de uma velocidade
do objeto que ndo condiz com a realidade, sendo um aspecto crucial a ser investigado para
uma compreensao completa do desempenho do filtro em cenérios dindmicos.

E possivel elaborar algumas propostas de solugdo de antemao, como, por exemplo,
alternar para as coordenadas previstas pelo filtro Kalman apenas em momentos especificos,

67

como apenas durante o deslocamento para frente do robd, ou seja, quando ele estiver em
linha reta com o alvo alinhado a camera.

Figura 25 — Imagem da inferéncia com mdultiplos objetos

M CMaketists v

inference
(targeti2))

float(target[3])

float(target

A seta vermelha aponta para a coordenada gerada pelo filtro Kalman. Note que o alvo
selecionado é, conforme configurado, 0 com o maior ID, que corresponde ao Ultimo a entrar
na cena.

Fonte: Autor

4.3 ROS

A utilizagcdo do ROS no ambiente Windows apresenta algumas limitagdes uma vez que o
ROS é predominantemente desenvolvido para ambientes baseados em Linux. Isso implica
que ajustes para garantir compatibilidade sao esperados e, apesar de a maquina Windows
ter conseguido iniciar o ambiente ROS, construir as dependéncias do projeto e executar com
sucesso os algoritmos de publicagao e inscricao, enfrentou falhas ao executar o cédigo de
visdo como node pois foi incapaz de localizar o médulo do TensorFlow. Esse problema pode
estar associado a execug¢do do ROS no Windows ou a um erro na selecao do interpretador,
aspectos que demandam investigagcéao adicional para resolugao.

4.4 Uso da Raspberry

Para abordar a hipbétese de que os problemas estavam relacionados ao ambiente
Windows foi realizada a configuragcao da Raspberry Pi com o sistema operacional Raspberry

68

Figura 26 — Médulo TensorFlow nao disponivel ao executar o ROS na maquina local Win-
dows 11

C:\Windows\System32>call "C:\Users\lyuji\projeto peixe ws\devel\setup.bat"

ros\log\7f309a33-96e0-11ee-9267-706979a3f577\roslaunch-LYK-18888. log

started roslaunch server http://127.0.
ros_comm version 1.15.9

noetic
on: 1.15.9

NODES
auto-starting new master

-11ee-9267-786979a3f577
vith pid [15708]

s\devel\lib\algoritmos_visao\run_inference.py”, line 15, in <module>

", line 2, in <module>
import ten "
ModuleNotFoundError: No module named 'tensorflow’

C:\Windows\System32>

Fonte: Autor

Pi OS baseado em Linux. Foi instalada a versdo do Conda para Raspberry, visto que o
Raspberry Pi OS possui uma versao nativa do Python (3.11) e sua modificagao junto a
outras bibliotecas e funcionalidades do sistema nao € viavel.

Apoés a criacao do ambiente virtual a proxima etapa envolveu testar o algoritmo fora
do ambiente ROS para identificar e corrigir possiveis problemas de versdes. Houve a
necessidade de adaptar o cédigo, uma vez que a camera oficial ndo € uma camera USB,
impossibilitando o uso do comando OpenCV utilizado na maquina Windows.

A solucao adotada envolveu a utilizacao da biblioteca picamera2, que, por sua vez, faz
uso da libcamera. No entanto, devido a um bug ja constatado pela comunidade desen-
volvedora (KASPERROR, |2022), a libcamera nao pode ser utilizada a ndo ser no Python
nativo.

Diante dessa limitacao, a opcao foi reescrever o codigo fora do ambiente virtual e baixar
as dependéncias de forma nativa, ou seja, diretamente no sistema. Entretanto, na instalagao,
o procedimento se deparou com um bug da distribuicdo de TensorFlow para aquela versao
especifica de Python (3.11), onde, ao requisitar ao servidor, era fornecida a versao errada e

69

ndo foi possivel instalar a versé@o correta para o sistema.

Figura 27 — Erro da requisigao do servidor

.

Os circulos vermelhos apontam para a versao que foi requisitada ao servidor e a versao
recebida apds a requisigao.
Fonte: Autor

71

5 CONCLUSAO

Neste trabalho foi desenvolvido um algoritmo de visdo que apresenta as funcionalidades
necessarias para navegacao, incluindo a capacidade de selecionar um alvo de uma classe
especifica seguindo critérios configuraveis. Além disso, realizamos testes bem-sucedidos
para explorar a viabilidade de implementar redes neurais personalizadas para adicéo de
novos objetos, destacando a flexibilidade e adaptabilidade do cédigo.

A versatilidade do algoritmo é evidenciada pela possibilidade de configurar a classe alvo,
0 modo de selegcdo em casos de multiplos objetos da mesma categoria, a capacidade de
selecao de diferentes modelo de inferéncia e a inclusdo de novos objetos, aspectos cruciais
para a aplicabilidade pratica do algoritmo em diferentes contextos e cenarios.

No entanto, € importante salientar que, durante a implementacéao, foram encontradas difi-
culdades que requerem solugao para garantir o bom funcionamento do sistema no ambiente
para o qual foi projetado. Apesar da légica e desenvolvimento bem sucedido da programa-
cao, sdo necessarias corregdes no que diz respeito as plataformas de implementacéo do
dispositivo.

Atualmente, é possivel utilizar o algoritmo fora do ambiente ROS, integrando a funciona-
lidade de controle de movimento e outros algoritmos em um Unico arquivo. Embora essa
pratica permita uma execug¢do mais simplificada, ela dificulta a integracao de novas fun¢des
e a edicao das existentes.

Portanto, proximos passos incluem a resolucao dos conflitos de dependéncia, teste de
viabilidade de diferentes modelos de camera para contornar o problema de incompatibilidade
de bibliotecas e integracao do cédigo na plataforma ROS.

73

REFERENCIAS

ABADI, M. et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
2015. Software available from tensorflow.org. Disponivel em: https://www.tensorflow.org/.

ANACONDA Software Distribution. Anaconda Inc., 2020. Disponivel em: https:
//docs.anaconda.com/.

ANSARI, S. Building Computer Vision Applications Using Artificial Neural Networks: With
step-by-step examples in opencv and tensorflow with python. [S.l.]: Apress, 2020.

ANWAR, A. Create and build your first ros package. 2021. Disponivel em: https://medium|
com/swlh/7-simple-steps-to-create-and-build-our-first-ros-package-7e3080d36faa. Acesso
em: 28 nov. 2023.

BEWLEY, A. et al. Simple online and realtime tracking. In: 2016 IEEE International
Conference on Image Processing (ICIP). IEEE, 2016. Disponivel em: http://dx.doi.org/10.
1109/ICIP.2016.7533003.

CONVOLUTIONAL Neural Networks for Visual Recognition. Disponivel em:
https://cs231n.github.io/convolutional-networks/. Acesso em: 04 dez. 2023.

GONZALEZ, R. C. Digital Image Processing: Third edition. [S.l.]: Pearson Prentice Hall,
2008.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press, 2016.
http://www.deeplearningbook.org.

KASPERROR. [BUG] Cannot be used with non-system python. [S.l.]: GitHub, 2022.
https://github.com/raspberrypi/picamera2/issues/446. Acesso em: 09 dez. 2023.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. In: PEREIRA, F. et al. (Ed.). Advances in Neural Information
Processing Systems. Curran Associates, Inc., 2012. v. 25. Disponivel em: https://proceedings.
neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436€924a68c45b-Paper.pdf.

LIN, T. et al. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.
Disponivel em: http://arxiv.org/abs/1405.0312.

RASPBERRY Pl FOUNDATION. Raspberry Pi 4 Model B. [S.l.]. Disponi-

vel em: https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.
pdf?_gl=1*7gnzm1*_ga*MTQ1NzU1NjU40S4xNzAyMDkzOTEy* ga
22FD70LWDS*MTcwMjA5MzkxMy4xLjEUMTcwMjASNDAwWMCA4wLjAuMA.. Acesso
em: 09 dez. 2023.

ROSEBROCK, A. Intersection over Union (loU) for object detection. https://pyimagesearch,
com/2016/11/07/intersection-over-union-iou-for-object-detection/. Acesso em: 22 nov. 2023.

TENSORFLOW: What's coming in TensorFlow 2.0. https://blog.tensorflow.org/2019/01/
whats-coming-in-tensorflow-2-0.html. Acesso em: 02 dez. 2023.

TRAN, D. xmltocsv. [S.1.]: GitHub, 2017. https://github.com/datitran/raccoon_dataset/blob/
master/xml_to_csv.py.

https://www.tensorflow.org/
https://docs.anaconda.com/
https://docs.anaconda.com/
https://medium.com/swlh/7-simple-steps-to-create-and-build-our-first-ros-package-7e3080d36faa
https://medium.com/swlh/7-simple-steps-to-create-and-build-our-first-ros-package-7e3080d36faa
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
https://cs231n.github.io/convolutional-networks/
http://www.deeplearningbook.org
https://github.com/raspberrypi/picamera2/issues/446
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://arxiv.org/abs/1405.0312
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf?_gl=1*7gnzm1*_ga*MTQ1NzU1NjU4OS4xNzAyMDkzOTEy*_ga_22FD70LWDS*MTcwMjA5MzkxMy4xLjEuMTcwMjA5NDAwMC4wLjAuMA..
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf?_gl=1*7gnzm1*_ga*MTQ1NzU1NjU4OS4xNzAyMDkzOTEy*_ga_22FD70LWDS*MTcwMjA5MzkxMy4xLjEuMTcwMjA5NDAwMC4wLjAuMA..
https://datasheets.raspberrypi.com/rpi4/raspberry-pi-4-product-brief.pdf?_gl=1*7gnzm1*_ga*MTQ1NzU1NjU4OS4xNzAyMDkzOTEy*_ga_22FD70LWDS*MTcwMjA5MzkxMy4xLjEuMTcwMjA5NDAwMC4wLjAuMA..
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://blog.tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html
https://blog.tensorflow.org/2019/01/whats-coming-in-tensorflow-2-0.html
https://github.com/datitran/raccoon_dataset/blob/master/xml_to_csv.py
https://github.com/datitran/raccoon_dataset/blob/master/xml_to_csv.py

74

TRAN, D. generatetfrecord. [S.l.]: GitHub, 2018. https://github.com/datitran/raccoon_dataset/
blob/master/generate_tfrecord.py.

VALMADRE, J. et al. Local Metrics for Multi-Object Tracking. 2021.

VOULODIMOS, A. Deep learning for computer vision: A brief review. 2018. Disponivel em:
https://www.hindawi.com/journals/cin/2018/7068349/.

WOJKE, N.; BEWLEY, A.; PAULUS, D. Simple Online and Realtime Tracking with a Deep
Association Metric. 2017.

WU, J. et al. Robust variational optical flow algorithm based on rolling guided filtering. In:
2018 11th International Congress on Image and Signal Processing, BioMedical Engineering
and Informatics (CISP-BMEI). [S.l.: s.n.], 2018. p. 1-6.

YAMASHINA, K. et al. Proposal of ros-compliant fpga component for low-power robotic
systems. 08 2015.

ZHAO, M.; WANG, L.; HAN, J. An adaptive tracking window based on mean-shift target
tracking algorithm. In: 2013 Chinese Automation Congress. [S.l.: s.n.], 2013. p. 348-352.

https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecord.py
https://github.com/datitran/raccoon_dataset/blob/master/generate_tfrecord.py
https://www.hindawi.com/journals/cin/2018/7068349/

75

APENDICE A - CODIGO DE INFERENCIA

Para utilizar o cédigo, € necessario configurar de acordo com os caminhos das pastas e
arquivos dentro da fungao if __name__ ==’__main__’. Os cédigos podem ser encontrados
no repositorio do autor. Para utilizar as fungdes importadas no algoritmo, baixe o repositorio

oficial do TensorFlow.

import numpy as np

import tensorflow as tf

import cv2

import sys

import random

import time

sys.path.append(’\\ projeto_peixev4\\sort’)

from object_detection. utils import ops as utils_ops
from object_detection. utils import label_map_util
from object_detection. utils import visualization_utils as vis_util
from sort import »

patch tf1 into ‘utils.ops’

utils_ops.tf = tf.compat.vi

Patch the location of gfile

tf.gfile = tf.io.gfile

def load_model (model_path):
model = tf.saved_model.load (model_path)
return model

def inference_for_frame (model, image):
image = np.asarray(image)
The input needs to be a tensor,
convert it using ‘tf.convert_to_tensor ‘.
input_tensor = tf.convert_to_tensor(image)
The model expects a batch of images,
so add an axis with ‘tf.newaxis ‘.
input_tensor = input_tensor[tf.newaxis,...]

Run inference
output_dict = model(input_tensor)

All outputs are batches tensors.

https://drive.google.com/drive/folders/1s0HMO_EuPm9YWZqogM0ZdVtlX9u1VUHK?usp=sharing
https://github.com/tensorflow/models/tree/master
https://github.com/tensorflow/models/tree/master

76

def

Convert to numpy arrays, and take index [0] to

remove the batch dimension.

We’re only interested in the first num_detections.

num_detections = int(output_dict.pop(’ ' num_detections’))

output_dict = {key: value[0, :num_detections].numpy /()
for key, value in output_dict.items ()}

output_dict['num_detections’] = num_detections

detection_classes should be ints.
output_dict['detection_classes’] =
output_dict['detection_classes’]. astype(np.int64)

Handle models with masks:
if ’detection_masks’ in output_dict:
Reframe the the bbox mask to the image size.
detection_masks reframed =
utils_ops .reframe_box_masks_to_image_masks (
output_dict['detection_masks '],
output_dict['detection_boxes '],
image.shape[0], image.shape[1])
detection_masks_reframed =
tf.cast(detection_masks_reframed > 0.5, tf.uint8)
output_dict['detection_masks_reframed’] =
detection_masks_reframed .numpy ()
return output_dict

target_tracking (tracked_objects_list, target, mode=0):
"’’tracked_object_list: array de shape (n,7),

contendo as informacoes no formato

(x1, y1, x2, y2, score, label, id)

target: string com o label do objeto alvo

mode: 0 -> segue o primeiro objeto da classe alvo que aparecer
mode: 1 -> segue o ultimo objeto da classe alvo que aparecer
mode: 2 -> segue o0 objeto da classe alvo com o maior score

em cena
target_labeled = np.empty((0,6))

Checagem de se a lista dos objetos da cena com categoria
alvo tem pelo menos um objeto

if tracked_objects_list.shape[0] != O:
Loop armazena os objetos da cena com a categoria alvo
for x, (x1, y1, x2, y2, score, label, id)
in enumerate(tracked_objects_list):
if label == target:
target_labeled = np.append(target_labeled,
[[id, x1, y1, x2, y2, score]], axis=0)

Checagem de se existe ao menos um objeto na lista de
objetos da categoria alvo
if target_labeled.shape[0] != O:
Loop gera o output de acordo com o modo (mode)
if mode ==
target_id = min(target_labeled[:,0])
for x, (id, x1, y1, x2, y2, score)
in enumerate(target_labeled):
if id == target_id:
return(id, x1, y1, x2, y2, score)
elif mode == 1:
target_id = max(target_labeled[:,0])
for x, (id, x1, y1, x2, y2, score)
in enumerate(target_labeled):
if id == target_id:
return(id, x1, y1, x2, y2, score)
return 0
elif mode == 2:
max_labeled_score = max(target_labeled[:,5])
for x, (id, x1, y1, x2, y2, score)
in enumerate(target_labeled):
target_id = id if float(score) ==
float (max_labeled_score) else None
return(id, x1, y1, x2, y2, score)
else:
return None

def run_inference (model, category index, cap):
Limiar para que o objeto seja classificado como valido
threshold = 0.5
Lista que contera as coordenadas dos objetos detectados

77

e suas pontuacoes

no formato [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
detections = np.empty((0, 5))

Lista contendo as coordenadas, 0s scores e as categorias
detections_plus_labels = np.empty((0, 6))

Lista que contera as coordenadas, o score,

a categoria e o ID

tracked_objects = np.empty((0, 7))

Instancia de SORT
mot_tracker = Sort()

Cores para as bounding boxes
colors = [(random.randint(0, 255), random.randint (0, 255),
random.randint (0, 255)) for j in range(10)]

Armazenamento do historico coordenadas de centro
target_register = np.empty((0,4))

Variavel que controla o inicio do Filtro Kalman
Kalman_start = False

Intervalo de tempo entre 0s registros e as previsoes
Kalman_time = 0.5

Variavel que conta os frames dentro desse intervalo de tempo
Kalman_frame_count = 0

Variavel para calcular o FPS

FPS_frame count = 0

Quantidade de frames a serem contabilizados no calculo
FPS frame _amount = 5

FPS = 0

while True:
ret retorna falso caso nao haja nada no frame
ret, frame = cap.read()
Calculo do FPS
if FPS_frame_count ==
FPS_start = time.time ()
FPS frame count = 0

79

FPS frame_count += 1
elif FPS_frame_count < FPS_frame_amount:
FPS frame count += 1
else:
FPS_end = time.time ()
FPS = FPS_frame_amount // (FPS_end - FPS_start)
FPS frame count = 0
print('FPS:_’, FPS)

Quantidade de frames correspondente ao
intervalo de tempo

entre as previsoes do Filtro Kalman
Kalman_frame_amount = int (FPS+~Kalman_time)

Actual detection
output_dict = inference_for_frame (model, frame)

for x, (y_min, x_min, y _max, x_max)
in enumerate(output_dict['detection_boxes’]):
if output_dict[’ 'detection_scores’][x] > threshold:
x1 = int(x_min«frame.shape[1])
y1 = int(y_min«frame.shape[0])
x2 = int(x_max+frame.shape[1])
y2 = int(y_max=«frame.shape[0])
O array abaixo armazena os objetos em cena
detections = np.append(detections,
[x1, y1, x2, y2,
output_dict['detection_scores][x]]]
, axis=0)
O array abaixo armazena os objetos em cena
e suas categorias para comparar
posteriormente com os IDs
detections_plus_labels =
np.append(detections_plus_labels,
[[x1, y1, x2, y2,
output_dict[detection_scores ’][x],
category_index[output_dict
[’detection_classes '][x]]
['name’]]], axis=0)

80

Envia a lista ao algoritmo de tracking

track_bbs_ids = mot_tracker.update(detections)

Diferenca maxima entre a distancia entre as coordenadas
das bounding boxes, visto que o output do SORT

difere em algumas unidades

delta _bbox = 10

Compara as coordenadas da lista de deteccoes com as

coordenadas na lista dos IDs para fazer as associacoes

for track, (tx1, tyl, tx2, ty2, id)
in enumerate(track_bbs_ids):
for detection, (dx1, dy1, dx2, dy2, score, label)
in enumerate(detections_plus_labels):
if abs(int(tx1) - int(dx1)) <=
delta_bbox and abs(int(ty1) - int(dyl))
<= delta_bbox and abs(int(tx2) - int(dx2))
<= delta_bbox and abs(int(ty2) - int(dy2))
<= delta_bbox:
tracked_objects =
np.append(tracked_objects ,
[[tx1, tyl, tx2, ty2, score,
label , int(id)]], axis=0)

Envia a lista de objetos sob o algoritmo de tracking
para o algoritmo que seleciona um alvo
target = target_tracking(tracked_objects, ’person’, 2)

Armazenamento
if target is not None:

x1 = float(target[1])
yl = float(target[2])
x2 = float(target[3])
y2 = float(target[4])

if target_register.shape[0] < 1:
target_register = np.append(target_register,
[[x1, y1, x2, y2]], axis=0)
else:
target_register[0,0] =

(target_register[0,1]
target_register[0,1] =
(target_register[0,1]
target_register[0,2] =
(target_register[0,2]
target_register[0,3] =
(target_register[0,3]

+

x1) / 2

+

yl) / 2

+

x2) / 2

+

y2) / 2

if Kalman_frame_count >= Kalman_frame_amount:
if Kalman_start is False:

Kalman_start = True

Kalman_Filter = KalmanBoxTracker (
[target_register[0,0],
target_register[0,1],
target_register[0,2],
target_register[0,3]])

target_register = np.empty((0,4))

Kalman_frame_count = 0

else:

Kalman_Filter.update ([target_register[0,0],
target_register[0,1],
target_register[0,2],
target_register[0,3]])

print (Kalman_Filter.predict ())

target_register = np.empty((0,4))

Kalman_frame count = 0

else:
Kalman_frame_count += 1

#print (target_center_register)
Coordenadas geradas pelo Filtro de Kalman
xk1, yk1, xk2, yk2 = 0, 0, 0, O

if Kalman_start is True and not
np.isnan(Kalman_Filter.predict ()[0,0]):
xk1 = int(Kalman_Filter.predict ()[0,0]

))
yk1 = int(Kalman_Filter.predict()[0,1])
xk2 = int(Kalman_Filter.predict()[0,2])
yk2 = int(Kalman_Filter.predict()[0,3])

82

Centro da previsao de Kalman
(xk1 + xk2) // 2
(yk1 + yk2) // 2

xkcenter

ykcenter

Visualizacao

Texto sobre os objetos

Fonte

fonte = cv2.FONT_HERSHEY_ SIMPLEX
Tamanho

fontScale = 1

Line thickness of 2 px
thickness = 2

for object, (x1, y1, x2, y2, score, label, id)
in enumerate(tracked_objects):
x1 = 0 if tracked_objects.shape[0] ==
else int(float(tracked_objects[object ,0]))
yl = 0 if tracked_objects.shape[0] == 0
else int(float(tracked_objects[object ,1]))
x2 = 0 if tracked_objects.shape[0] ==
else int(float(tracked_objects[object 2]))
y2 = 0 if tracked_objects.shape[0] ==
else int(float(tracked_objects[object ,3]))

Centro do objeto
(x1 + x2) // 2
(y1 +y2) /] 2

xcenter

ycenter

#cv2.circle (frame, (xct1, yci1), 20, (0,0,255), 10, -1)
#cv2.circle (frame, (xc2, yc2), 20, (0,0,255), 10, -1)
cv2.circle (frame, (xkcenter, ykcenter), 10,
(255,255,255), 10, -1)
cv2.rectangle (frame, (x1, y1), (x2, y2),
(colors[int(float(id)) % len(colors)]), 3)
cv2.putText(frame, (tracked_objects[object,5] +
" ID:_’ + tracked_objects[object ,6]), (x1, y1),
fonte, fontScale, (colors[int(float(id))
% len(colors)]), thickness, cv2.LINE_AA)

if _name_ == '_ main__ ’:

cv2.putText(frame, (’FPS:,’ + str(FPS)), (0, 50), fonte,
fontScale, (0,0,0), thickness, cv2.LINE_AA)
cv2.imshow(’object_detection’,
cv2.resize (frame, (800, 600)))
if cv2.waitKey(25) & OxFF == ord('q’):
cap.release ()
cv2.destroyAllWindows ()
break

print(frame.shape) -> (480, 640, 3)

"’’vis_util.visualize_boxes _and_labels _on_image_ array(
frame,
output_dict[detection_boxes '],
output_dict[detection_classes '],
output_dict[detection_scores '],
category_index,
instance_masks=output_dict. get(
"detection_masks_reframed ’, None),
use_normalized coordinates=True,
line_thickness=8) "’

Esvazia as listas para o proximo frame
detections = np.empty((0, 5))
detections_plus_labels = np.empty((0, 6))
tracked_objects = np.empty((0, 7))

Caminho ate o modelo

dete

ction_model = load_model(
"ssd_mobilenet_v2_320x320_coco17_tpu -8\\saved_model ")

Caminho ate o label map

category_index =

label_map_util.create_category_index_from_labelmap ('models\\

[T I T [T |

cap

research\\ object_detection\\data\\mscoco_label_map.pbtxt
use_display_name=True)

= cv2.VideoCapture (1)
run_

inference (detection_model, category_index, cap)

83

’
)

85

APENDICE B - DOWNLOAD DE MODELOS

Para fazer download de um dos modelos do TensorFlow, acesse o repositorio oficial,
selecione um dos modelos, insira-o no cédigo abaixo e execute.

import wget

model_link = "(http ://download.tensorflow.org/models
oo/ Object_detection/tf2/20200711/link . tar.gz)"
wget.download (model_link)

import tarfile

tar = tarfile .open(’arquivo.tar.gz’)
tar.extractall (’.’)

tar.close()

Apoés isso, sera baixado o modelo no diretério que contém o cddigo acima, e sera
necessario fazer a referéncia da pasta saved_model no algoritmo de visdo contido no
Apéndice A.

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

87
APENDICE C - TREINAMENTO DE MODELO

Neste apéndice estdo descritas as etapas referentes ao treinamento de um modelo
para detectar objetos customizados, o que serd util no caso de categorias especificas ndo
encontradas nos datasets disponiveis publicamente. Para utilizar as fun¢des de treinamento,
baixe orepositorio oficial do TensorFlow.

Coletar imagens que contenham os objetos de interesse e separa-las em uma pasta train,
para o treino do modelo, e test, para o teste. Coletar acima de 200 imagens e inserir 70%
delas na pasta para treino e 30% delas na para teste.

Executar no terminal labelimg.exe e abrir as imagens para categorizar os objetos presentes
nela através do Create RectBox, como na Figura[16]

Converter Anotagdes para CSV: Utilize o script abaixo para converter os arquivos de
anotacdo XML para o formato CSV. Este script espera uma pasta "images"com subpastas
"train"e "test". Baseado no cédigo (TRAN, [2017)

import os

import glob

import pandas as pd

import xml.etree.ElementTree as ET

def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + "/«.xml’):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall(’object’):
value = (root.find(’filename’).text,
int(root.find(’size’)[0].text),
int(root.find(’size’)[1].text),
member[0]. text ,
int (member[4][0]. text)
int(member[4][1]. text),
int (member[4][2]. text),
int (member[4][3]. text)

)

xml_list.append(value)

column_name = [’filename’, ’width’, ’height’, ’class’,
Xmin’, ’'ymin’, ’xmax’, ’'ymax’]

xml_df = pd.DataFrame(xml_list, columns=column_name)

return xml_df

https://github.com/tensorflow/models/tree/master

88

def main():
for folder in [’train’, ’test’]:
image_path = os.path.join (os.getcwd (),
(’images/’ + folder))
xml_df = xml_to_csv(image_path)
xml_df.to_csv ((’images/’+folder+’ _labels.csv’),
index=None)
print(’Successfully_converted_xml_to_csv.’)

main ()

Gerar Arquivos TFRecord: Outro script gera arquivos TFRecord, um formato que o
TensorFlow usa para treinamento. Modifique de acordo com os labels nomeados na etapa
de categorizacao e execute este script tanto para os dados de treinamento quanto para os
de teste. Baseado no cédigo (TRAN, 2018)

from __ future__ import division

from _ future__ import print_function
from __ future__ import absolute_import
import os

import io

import pandas as pd

from tensorflow.python.framework.versions import VERSION
if VERSION >= "2.0.0a0":

import tensorflow.compat.vl as tf
else:

import tensorflow as tf

from PIL import Image
from object_detection. utils import dataset_util

from collections import namedtuple, OrderedDict

flags = tf.app.flags

flags .DEFINE_string(’csv_input’, ’’, ’Path_to_the CSV input’)
flags.DEFINE_string ('output_path’, ’’, ’'Path_to_output_TFRecord’)
flags . DEFINE_string('image_dir’, ’’, ’Path_to_images’)

FLAGS = flags .FLAGS

LA AN

89

dok ok ok ok ok ko kk ok k ok kk ok kA A Ak ko kk ok k ok kk ok kA A Ak K kK kA

Make sure to edit this method to maich

the

labels you made with labellmg!

dok ok ok ok ok k ko kk ok k ok k ok ok kA Ak ok kk ok k ok k ok kk kA A Ak kK kKA

LRERN

def

def

def

class_text_to_int(row_label):

if row_label == 'example_label_1":
return 1

elif row_label == ’example_label_2 " :
return 2

elif row_label == ’example_label_3’:
return 3

else:

return None

split(df, group):

data = namedtuple(’data’, [’filename’, ’'object’])

gb = df.groupby(group)

return [data(filename, gb.get_group(x)) for
filename, x in zip(gb.groups.keys(), gb.groups)]

create_tf_example(group, path):

with tf.gfile.GFile(os.path.join (path,
"{} ’.format(group.filename)), ’'rb’) as fid:

encoded_jpg = fid.read()

encoded_jpg_io = io.ByteslO(encoded_jpg)

image = Image.open(encoded_jpg_io)

width , height = image.size

filename = group.filename.encode(’ ' utf8’)

image_format = b’jpg’
xmins = []
xmaxs = []
ymins = []
ymaxs = []

classes_text
classes = []
for index, row in group.object.iterrows ():

[]

90
xmins.append(row|['xmin’] / width)
xmaxs . append(row['xmax’] / width)

/ height)
ymaxs.append(row['ymax’] / height)
classes_text.append(row[’'class’].encode(’ ' utf8’))
classes.append(class_text_to_int(row['class’]))

tf_example = tf.train.Example(

(

(
ymins . append (row|[’ymin’]

(

features=tf.train.Features(feature={
‘image/ height ’:

dataset_util.int64_feature (height),
‘image/width ’:

dataset_util.int64_feature (width),
‘image/filename ’:

dataset_util.bytes_feature (filename),
‘image/source_id :

dataset_util.bytes_feature (filename),
‘image/encoded ’:

dataset_util.bytes_feature (encoded_jpg),
‘image/format ’:

dataset_util.bytes_feature (image_format),
‘image/ object/bbox/xmin’:

dataset_util.float_list_feature (xmins),
‘image/ object/bbox/xmax’:

dataset_util.float_list_feature (xmaxs),
‘image/ object/bbox/ymin’:

dataset_util.float_list_feature (ymins),
‘image/ object/bbox/ymax’:

dataset_util.float_list_feature (ymaxs),
‘image/object/class/text’:

dataset_util.bytes_list_feature(classes_text),
‘image/object/class/label ’:

dataset_util.int64_list_feature (classes),

1))

return tf_example

def main(_):
writer = tf.python_io.TFRecordWriter (FLAGS. output_path)
path = os.path.join (FLAGS.image_dir)
examples = pd.read_csv(FLAGS.csv_input)

91

grouped = split(examples, ’filename’)

for group in grouped:
tf_example = create_tf_example(group, path)
writer.write (tf_example. SerializeToString ())

writer.close ()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print(’Successfully_created_the_TFRecords:

uuuuuuuu {} ’.format(output_path))

if _ name_ == '_ main__ ’:
tf.app.run()

commands :

python generate_tfrecord.py
——csv_input=images/test_labels.csv
——image_dir=images/test —--output_path=test.record

python generate_tfrecord.py
——csv_input=images/train_labels.csv
——image_dir=images/train —--output_path=train.record

main ()

Baixar um Modelo Pré-Treinado: Apos a escolha de um modelo pré-treinado do Ten-
sorFlow Model Zoo. Escolha um modelo de acordo com suas necessidades e desempenho
desejado. Baixar e descompactar conforme discorrido no Apéndice B.

Criar um Mapa de Rétulos: Crie um arquivo de mapa de rétulos (normalmente chamado
labelmap.pbtxt). Cada classe deve ter um bloco no formato item id: ..., name: Os IDs
devem coincidir com os IDs usados nos scripts anteriores.

item {

id: 1

name: ’'example_label_1
}

item {

id: 2

name: ’'example_label_2°

}

item {

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/tf2_detection_zoo.md

92

id: 3
name: ’'example_label_3°

}

Configurar o Arquivo de Configuracao .config do Modelo: Copie o arquivo de configu-
racdo do modelo (normalmente encontrado em models/research/object_detection/configs/tf2/)
para a pasta principal do projeto. Abra o arquivo de configuragdo em um editor de texto.
Altere os seguintes parametros:

» num_classes: Numero de classes no seu conjunto de dados.

» fine_tune_checkpoint: Caminho para o arquivo de checkpoint do modelo pré-treinado
baixadp.

+ batch_size: Defina um valor apropriado com base na capacidade do seu hardware.
Caso use CPU, mantenha um valor baixo, como 2.

« Configurar Caminhos para Dados: Atualize os caminhos para os dados de treina-
mento e teste no arquivo de configuracao. Certifiqgue-se de que os caminhos estejam
corretos, apontando para os arquivos TFRecord que vocé gerou.

No label_map_path dentro do train_input_reader, insira o .../labelmap.pbtxt criado.
No fine_tune_checkpoint, aponte para o .../checkpoint/ckpt-O dentro do modelo
que foi baixado na etapa anterior. Também altere o fine_tune_checkpoint_type de
"classification" para "detection".

No input_path dentro do train_input_reader, insira o .../train.record criado.

No input_path dentro do eval_input_reader, insira o .../test.record criado.

Treinamento do Modelo: Para iniciar o treinamento, utilize a fungéo do TensorFlow. Use
o script de treinamento fornecido no repositério oficial do TensorFlow no GitHub. Execute,
no terminal, o comando:

python model_main_tf2.py —-caminho_do.config
——model_dir=training —--alsologtostderr

O arquivo model_main_tf2.py se encontra no .../models/research/object_detection.
TensorBoard: E possivel monitorar a progressdo do modelo executando no terminal o
comando

tensorboard —-logdir ’training/train’

para abrir o TensorBoard
Exportar Modelo Treinado: Uma vez concluido o treinamento, exporte o0 modelo treinado
para uso posterior através do comando no terminal

python exporter_main_v2.py —-trained_checkpoint_dir=training
——pipeline_config_path=arquivo.config
——output_directory inference_graph

O script para exportagédo deve ser ajustado com os caminhos corretos.

93

95

APENDICE D - VERSOES DE BIBLIOTECAS COMPATIVEIS

Ao solucionar problemas de compatibilidade que ocorreram ao longo do desenvolvimento
da tese, o ambiente virtual foi capaz de executar a inferéncia e treinamento a partir das
versoes listadas neste apéndice. Note que nem todas as bibliotecas foram utilizadas, visto
qgue o Conda insere automaticamente na criagdo de espagos virtuais.
absl-py 1.4.0; apache-beam 2.46.0; array-record 0.4.0; astunparse 1.6.3; avro-python3
1.10.2; bleach 6.0.0; cachetools 5.3.1; certifi 2023.5.7; charset-normalizer 3.1.0; click 8.1.3;
cloudpickle 2.2.1; colorama 0.4.6; contextlib2 21.6.0; contourpy 1.1.0; crcmod 1.7; cycler
0.11.0; Cython 0.29.35; dill 0.3.1.1; dm-tree 0.1.8; docopt 0.6.2; etils 1.3.0; fastavro 1.7.4;
fasteners 0.18; filterpy 1.4.5; flatbuffers 1.12; fonttools 4.40.0; gast 0.4.0; gin-config 0.5.0;
google-api-core 2.11.1; google-api-python-client 2.91.0; google-auth 2.21.0; google-auth-
httplib2 0.1.0; google-auth-oauthlib 0.4.6; google-pasta 0.2.0; googleapis-common-protos
1.59.1; grpcio 1.56.0; h5py 3.9.0; hdfs 2.7.0; httplib2 0.21.0; idna 3.4; imageio 2.31.3; immu-
tabledict 2.2.5; importlib-resources 5.12.0; joblib 1.3.1; kaggle 1.5.15; keras 2.9.0; Keras-
Preprocessing 1.1.2; kiwisolver 1.4.4; labellmg 1.8.6; labeling 0.1.13; lap 0.4.0; lazy_loader
0.3; libclang 16.0.0; Ivis 0.5.3; Ixml 4.9.2; Markdown 3.4.3; MarkupSafe 2.1.3; mask-rcnn-tf2
1.0; matplotlib 3.7.1; mkl-fft 1.3.6; mkl-random 1.2.2; mkl-service 2.4.0; networkx 3.1; numpy
1.24.4; oauth2client 4.1.3; oauthlib 3.2.2; object-detection 0.1; objsize 0.6.1; opencv-contrib-
python 4.8.0.74; opencv-python 4.8.0.74; opencv-python-headless 4.8.0.74; opt-einsum
3.3.0; orjson 3.9.1; packaging 23.1; pandas 2.0.3; Pillow 9.5.0; pip 23.1.2; portalocker 2.7.0;
promise 2.3; proto-plus 1.22.3; protobuf 3.19.6; psutil 5.9.5; py-cpuinfo 9.0.0; pyarrow 9.0.0;
pyasni 0.5.0; pyasni-modules 0.3.0; pycocotools 2.0; pydot 1.4.2; pymongo 3.13.0; pypar-
sing 2.4.7; PyQt5 5.15.9; PyQt5-Qt5 5.15.2; PyQt5-sip 12.12.2; python-dateutil 2.8.2; python-
slugify 8.0.1; pytz 2023.3; PyWavelets 1.4.1; pywin32 306; PyYAML 5.4.1; regex 2023.6.3;
requests 2.31.0; requests-oauthlib 1.3.1; rsa 4.9; sacrebleu 2.2.0; scikit-image 0.21.0; scikit-
learn 1.3.0; scipy 1.11.1; sentencepiece 0.1.99; seqgeval 1.2.2; setuptools 67.8.0; six 1.16.0;
tabulate 0.9.0; tensorboard 2.9.1; tensorboard-data-server 0.6.1; tensorboard-plugin-wit
1.8.1; tensorflow 2.9.1; tensorflow-addons 0.20.0; tensorflow-datasets 4.9.0; tensorflow-
estimator 2.9.0; tensorflow-hub 0.13.0; tensorflow-io 0.31.0; tensorflow-io-gcs-filesystem
0.31.0; tensorflow-metadata 1.13.0; tensorflow-model-optimization 0.7.5; tensorflow-text
2.10.0; termcolor 2.3.0; text-unidecode 1.3; tf-models-official 2.10.1; tf-slim 1.1.0; threadpo-
olctl 3.1.0; tifffile 2023.7.18; toml 0.10.2; tqdm 4.65.0; typeguard 2.13.3; typing_extensions
4.7.1; tzdata 2023.3; uritemplate 4.1.1; urllib3 1.26.16; webencodings 0.5.1; Werkzeug 2.3.6;
wget 3.2; wheel 0.38.4; wrapt 1.15.0; zipp 3.15.0; zstandard 0.21.0

97

ANEXO A - LICENCA DO LABELIMG

Copyright (c) <2015-Present> Tzutalin
Copyright (C) 2013 MIT, Computer Science and Artificial Intelligence Laboratory. Bryan
Russell, Antonio Torralba, William T. Freeman
Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

99

ANEXO B - LICENCA DO NUMPY

Copyright (C) 2008-2023 Stefan van der Walt <stefan@mentat.za.net>, Pauli Virtanen
<pav@iki.fi>
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. 2. Redistributions in binary form must reproduce
the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR “AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

101

ANEXO C - LICENCA DO OPENCV

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License"shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.
"Licensor"shall mean the copyright owner or entity authorized by the copyright owner that
is granting the License.
"Legal Entity"shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this
definition, "control"means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50outstanding shares, or (iii) beneficial ownership of such entity.
"You"(or "Your") shall mean an individual or Legal Entity exercising permissions granted by
this License.

"Source"form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.
"Object"form shall mean any form resulting from mechanical transformation or translation
of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.

"Work"shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).
"Derivative Works"shall mean any work, whether in Source or Object form, that is based on
(or derived from) the Work and for which the editorial revisions, annotations, elaborations,
or other modifications represent, as a whole, an original work of authorship. For the
purposes of this License, Derivative Works shall not include works that remain separable
from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works
thereof.

102

"Contribution"shall mean any work of authorship, including the original version of the Work
and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an
individual or Legal Entity authorized to submit on behalf of the copyright owner. For the
purposes of this definition, "submitted"means any form of electronic, verbal, or written
communication sent to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and issue tracking
systems that are managed by, or on behalf of, the Licensor for the purpose of discussing
and improving the Work, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as "Not a Contribution.”
"Contributor"shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such Derivative
Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license
applies only to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contribution(s) with the
Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

103

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this
License; and
(b) You must cause any modified files to carry prominent notices stating that You changed
the files; and
(c) You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and
(d) If the Work includes a "NOTICE"text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not pertain to any part of the
Derivative Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by the Derivative
Works, if and wherever such third-party notices normally appear. The contents of the
NOTICE file are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions stated in
this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any
separate license agreement you may have executed with Licensor regarding such
Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing the
content of the NOTICE file.

104

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an "AS
IS"BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR

PURPQOSE. You are solely responsible for determining the appropriateness of using or

redistributing the Work and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for
damages, including any direct, indirect, special, incidental, or consequential damages of

any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such

Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on Your
sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.

END OF TERMS AND CONDITIONS

105

ANEXO D - LICENCA DO ROS

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer. * Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. * Neither the name of
copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS"AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

107

ANEXO E - LICENCA DO SORT

GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted
to copy and distribute verbatim copies of this license document, but changing it is not
allowed.
Preamble
The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to
make sure it remains free software for all its users. We, the Free Software Foundation, use
the GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new free programs, and that
you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright
on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed

erroneously to authors of previous versions.

108

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally
incompatible with the aim of protecting users’ freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for individuals to use,
which is precisely where it is most unacceptable. Therefore, we have designed this version
of the GPL to prohibit the practice for those products. If such problems arise substantially
in other domains, we stand ready to extend this provision to those domains in future
versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers,
but in those that do, we wish to avoid the special danger that patents applied to a free
program could make it effectively proprietary. To prevent this, the GPL assures that patents
cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS
0. Definitions.

"This License"refers to version 3 of the GNU General Public License.
"Copyright"also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

"The Program"refers to any copyrightable work licensed under this License. Each licensee
is addressed as "you". "Licensees"and "recipients"may be individuals or organizations.
To "modify"a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called
a "modified version"of the earlier work or a work "based on"the earlier work.

A "covered work"means either the unmodified Program or a work based on the Program.
To "propagate"a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except
executing it on a computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the public, and in some
countries other activities as well.

To "convey"a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer
of a copy, is not conveying.

An interactive user interface displays "Appropriate Legal Notices"to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the work under this
License, and how to view a copy of this License. If the interface presents a list of user
commands or options, such as a menu, a prominent item in the list meets this criterion.

109

1. Source Code.
The "source code"for a work means the preferred form of the work for making modifications
to it. "Object code"means any non-source form of a work.

A "Standard Interface"means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

The "System Libraries"of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A "Major Component”, in this context, means a
major essential component (kernel, window system, and so on) of the specific operating
system (if any) on which the executable work runs, or a compiler used to produce the work,
or an object code interpreter used to run it.

The "Corresponding Source"for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify
the work, including scripts to control those activities. However, it does not include the
work’s System Libraries, or general-purpose tools or generally available free programs
which are used unmodified in performing those activities but which are not part of the work.
For example, Corresponding Source includes interface definition files associated with
source files for the work, and the source code for shared libraries and dynamically linked
subprograms that the work is specifically designed to require, such as by intimate data
communication or control flow between those subprograms and other parts of the work.
The Corresponding Source need not include anything that users can regenerate
automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms
your unlimited permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its content, constitutes a
covered work. This License acknowledges your rights of fair use or other equivalent, as
provided by copyright law.

110

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively for you,
or provide you with facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not control copyright. Those
thus making or running the covered works for you must do so exclusively on your behalf,
under your direction and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.
3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on
20 December 1996, or similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against the work’s users,
your or third parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License along
with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also
meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant

date.

b) The work must carry prominent notices stating that it is released under this License and

any conditions added under section 7. This requirement modifies the requirement in
section 4 to "keep intact all notices".

111

c) You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable
section 7 additional terms, to the whole of the work, and all its parts, regardless of how
they are packaged. This License gives no permission to license the work in any other way,
but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
"aggregate"if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion of
a covered work in an aggregate does not cause this License to apply to the other parts of
the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the
terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable
physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and valid
for as long as you offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the Corresponding Source for
all the software in the product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no more than your
reasonable cost of physically performing this conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c¢) Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer, in accord with subsection 6b.

112

d) Convey the object code by offering access from a designated place (gratis or for a
charge), and offer equivalent access to the Corresponding Source in the same way
through the same place at no further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to copy the object code is a
network server, the Corresponding Source may be on a different server (operated by you
or a third party) that supports equivalent copying facilities, provided you maintain clear
directions next to the object code saying where to find the Corresponding Source.
Regardless of what server hosts the Corresponding Source, you remain obligated to
ensure that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered to
the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the
Corresponding Source as a System Library, need not be included in conveying the object
code work.

A "User Product"is either (1) a "consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2)
anything designed or sold for incorporation into a dwelling. In determining whether a
product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a
particular product received by a particular user, "normally used"refers to a typical or
common use of that class of product, regardless of the status of the particular user or of
the way in which the particular user actually uses, or expects or is expected to use, the
product. A product is a consumer product regardless of whether the product has
substantial commercial, industrial or non-consumer uses, unless such uses represent the
only significant mode of use of the product.

"Installation Information"for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered
work in that User Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because modification has been made.
If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of
possession and use of the User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the Corresponding Source
conveyed under this section must be accompanied by the Installation Information. But this
requirement does not apply if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has been installed in
ROM).

113

The requirement to provide Installation Information does not include a requirement to
continue to provide support service, warranty, or updates for a work that has been modified
or installed by the recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and protocols for
communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation
available to the public in source code form), and must require no special password or key
for unpacking, reading or copying.

7. Additional Terms.

"Additional permissions"are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable to
the entire Program shall be treated as though they were included in this License, to the
extent that they are valid under applicable law. If additional permissions apply only to part
of the Program, that part may be used separately under those permissions, but the entire
Program remains governed by this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written to
require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or
can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of
this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16
of this License; or
b) Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or
c¢) Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or
d) Limiting the use for publicity purposes of names of licensors or authors of the material;
or
e) Declining to grant rights under trademark law for use of some trade names, trademarks,

or service marks; or

114

f) Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions of liability to
the recipient, for any liability that these contractual assumptions directly impose on those

licensors and authors.

All other non-permissive additional terms are considered "further restrictions"within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice
stating that it is governed by this License along with a term that is a further restriction, you

may remove that term. If a license document contains a further restriction but permits

relicensing or conveying under this License, you may add to a covered work material
governed by the terms of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the
third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to 60 days after the
cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, you do not qualify to receive new licenses for
the same material under section 10.

115

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using
peer-to-peer transmission to receive a copy likewise does not require acceptance.
However, nothing other than this License grants you permission to propagate or modify any
covered work. These actions infringe copyright if you do not accept this License. Therefore,
by modifying or propagating a covered work, you indicate your acceptance of this License
to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You
are not responsible for enforcing compliance by third parties with this License.

An "entity transaction"is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations. If
propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus a
right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program or
any portion of it.

11. Patents.

A "contributor"is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
"contributor version".

A contributor’s "essential patent claims"are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by
some manner, permitted by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a consequence of further
modification of the contributor version. For purposes of this definition, "control"includes the
right to grant patent sublicenses in a manner consistent with the requirements of this
License.

116

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under
the contributor’s essential patent claims, to make, use, sell, offer for sale, import and
otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a "patent license"is any express agreement or
commitment, however denominated, not to enforce a patent (such as an express
permission to practice a patent or covenant not to sue for patent infringement). To
"grant"such a patent license to a party means to make such an agreement or commitment
not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the
Corresponding Source of the work is not available for anyone to copy, free of charge and
under the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. "Knowingly relying"means
you have actual knowledge that, but for the patent license, your conveying the covered
work in a country, or your recipient’s use of the covered work in a country, would infringe
one or more identifiable patents in that country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some
of the parties receiving the covered work authorizing them to use, propagate, modify or
convey a specific copy of the covered work, then the patent license you grant is
automatically extended to all recipients of the covered work and works based on it.

A patent license is "discriminatory"if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights
that are specifically granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the business of distributing
software, under which you make payment to the third party based on the extent of your
activity of conveying the work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent license (a) in
connection with copies of the covered work conveyed by you (or copies made from those
copies), or (b) primarily for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement, or that patent license
was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable

patent law.

117

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this
License. If you cannot convey a covered work so as to satisfy simultaneously your
obligations under this License and any other pertinent obligations, then as a consequence
you may not convey it at all. For example, if you agree to terms that obligate you to collect
a royalty for further conveying from those to whom you convey the Program, the only way
you could satisfy both those terms and this License would be to refrain entirely from
conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work. The
terms of this License will continue to apply to the part which is the covered work, but the
special requirements of the GNU Affero General Public License, section 13, concerning
interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU General Public License "or any later version"applies
to it, you have the option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of the GNU General Public License, you may choose
any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General
Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

118

15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS
IS"WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE
OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless
a warranty or assumption of liability accompanies a copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS

119

ANEXO F - LICENCA DO TENSORFLOW

Apache License Version 2.0, January 2004 http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License"shall mean the terms and conditions for use, reproduction, and distribution as
defined by Sections 1 through 9 of this document.
"Licensor"shall mean the copyright owner or entity authorized by the copyright owner that
is granting the License.
"Legal Entity"shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this
definition, "control"means (i) the power, direct or indirect, to cause the direction or
management of such entity, whether by contract or otherwise, or (ii) ownership of fifty
percent (50outstanding shares, or (iii) beneficial ownership of such entity.
"You"(or "Your") shall mean an individual or Legal Entity exercising permissions granted by
this License.

"Source"form shall mean the preferred form for making modifications, including but not
limited to software source code, documentation source, and configuration files.
"Object"form shall mean any form resulting from mechanical transformation or translation
of a Source form, including but not limited to compiled object code, generated
documentation, and conversions to other media types.

"Work"shall mean the work of authorship, whether in Source or Object form, made
available under the License, as indicated by a copyright notice that is included in or
attached to the work (an example is provided in the Appendix below).
"Derivative Works"shall mean any work, whether in Source or Object form, that is based on
(or derived from) the Work and for which the editorial revisions, annotations, elaborations,
or other modifications represent, as a whole, an original work of authorship. For the
purposes of this License, Derivative Works shall not include works that remain separable
from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works
thereof.

120

"Contribution"shall mean any work of authorship, including the original version of the Work
and any modifications or additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an
individual or Legal Entity authorized to submit on behalf of the copyright owner. For the
purposes of this definition, "submitted"means any form of electronic, verbal, or written
communication sent to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems, and issue tracking
systems that are managed by, or on behalf of, the Licensor for the purpose of discussing
and improving the Work, but excluding communication that is conspicuously marked or
otherwise designated in writing by the copyright owner as "Not a Contribution.”
"Contributor"shall mean Licensor and any individual or Legal Entity on behalf of whom a
Contribution has been received by Licensor and subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the Work and such Derivative
Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge,
royalty-free, irrevocable (except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license
applies only to those patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of their Contribution(s) with the
Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a
Contribution incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

121

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works
thereof in any medium, with or without modifications, and in Source or Object form,
provided that You meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this
License; and
(b) You must cause any modified files to carry prominent notices stating that You changed
the files; and
(c) You must retain, in the Source form of any Derivative Works that You distribute, all
copyright, patent, trademark, and attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the Derivative Works; and
(d) If the Work includes a "NOTICE"text file as part of its distribution, then any Derivative
Works that You distribute must include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not pertain to any part of the
Derivative Works, in at least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source form or documentation, if
provided along with the Derivative Works; or, within a display generated by the Derivative
Works, if and wherever such third-party notices normally appear. The contents of the
NOTICE file are for informational purposes only and do not modify the License. You may
add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional
attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide
additional or different license terms and conditions for use, reproduction, or distribution of
Your modifications, or for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with the conditions stated in
this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution
intentionally submitted for inclusion in the Work by You to the Licensor shall be under the
terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any
separate license agreement you may have executed with Licensor regarding such
Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required for
reasonable and customary use in describing the origin of the Work and reproducing the
content of the NOTICE file.

122

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing,
Licensor provides the Work (and each Contributor provides its Contributions) on an "AS
IS"BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions of TITLE,
NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR

PURPQOSE. You are solely responsible for determining the appropriateness of using or

redistributing the Work and assume any risks associated with Your exercise of permissions
under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including
negligence), contract, or otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for
damages, including any direct, indirect, special, incidental, or consequential damages of

any character arising as a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill, work stoppage, computer
failure or malfunction, or any and all other commercial damages or losses), even if such

Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative
Works thereof, You may choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights consistent with this License.
However, in accepting such obligations, You may act only on Your own behalf and on Your
sole responsibility, not on behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any liability incurred by, or
claims asserted against, such Contributor by reason of your accepting any such warranty
or additional liability.

END OF TERMS AND CONDITIONS

	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de abreviaturas e siglas
	Sumário
	INTRODUÇÃO
	Contexto e Motivação
	Objetivos
	Organização do Trabalho

	REVISÃO BIBLIOGRÁFICA
	Visão Geral
	Visão Computacional
	Pré-processamento
	Segmentação de imagens
	Extração de Características
	Reconhecimento

	Redes Neurais Convolucionais Profundas
	Rede Neural Artificial
	Perceptron
	Aprendizado de um Perceptron
	Perceptron de Múltiplas Camadas
	Funções de ativação
	Função de Erro
	Algoritmos de Otimização
	Retropropagação
	Redes Neurais Convolucionais (CNNs)
	Saídas dos modelos de detecção de objetos

	Rastreamento de Objetos
	Deslocamento Médio
	Fluxo Óptico
	Algoritmos de Predição de Trajetória
	SORT

	TensorFlow
	ROS

	DESENVOLVIMENTO
	Hardware utilizado
	Máquina local
	Raspberry Pi 4B

	Treinamento de modelo
	Dataset
	Uso de modelos pré-treinados
	TensorBoard

	Modelos e diferenças
	Algoritmo de Visão
	Ambiente de Desenvolvimento
	Detecção de Objeto
	Rastreamento de Objeto
	Critérios
	Coordenadas extraídas

	Predição de trajetória
	Filtro Kalman
	Cálculo de FPS
	Considerações

	Implementação do ROS
	Publisher Node
	Message
	Topic
	Subscriber

	RESULTADOS
	Treinamento do modelo
	Detecção e Rastreamento de Objetos
	ROS
	Uso da Raspberry

	CONCLUSÃO
	REFERÊNCIAS
	APÊNDICE A - CÓDIGO DE INFERÊNCIA
	APÊNDICE B - DOWNLOAD DE MODELOS
	APÊNDICE C - TREINAMENTO DE MODELO
	APÊNDICE D - VERSÕES DE BIBLIOTECAS COMPATÍVEIS
	ANEXO A - LICENÇA DO LABELIMG
	ANEXO B - LICENÇA D0 NUMPY
	ANEXO C - LICENÇA DO OPENCV
	ANEXO D - LICENÇA DO ROS
	ANEXO E - LICENÇA DO SORT
	ANEXO F - LICENÇA DO TENSORFLOW

